Limits : A New Approach to Real Analysis
Limits : A New Approach to Real Analysis
Click to enlarge
Author(s): Beardon, Alan F.
ISBN No.: 9781461268727
Pages: ix, 190
Year: 201210
Format: Trade Paper
Price: $ 79.05
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

I Foundations.- 1 Sets and Functions.- 1.1 Sets.- 1.2 Ordered pairs.- 1.3 Functions.


- 2 Real and Complex Numbers.- 2.1 Algebraic properties of real numbers.- 2.2 Order.- 2.3 Upper and lower bounds.- 2.


4 Complex numbers.- 2.5 Notation.- II Limits.- 3 Limits.- 3.1 Introduction.- 3.


2 Directed sets.- 3.3 The definition of a limit.- 3.4 Examples of limits.- 3.5 Sums, products, and quotients of limits.- 3.


6 Limits and inequalities.- 3.7 Functions tending to infinity.- 4 Bisection Arguments.- 4.1 Nested intervals.- 4.2 The Intermediate Value Therem.


- 4.3 The Mean Value Inequality.- 4.4 The Cauchy Criterion.- 5 Infinite Series.- 5.1 Infinite series.- 5.


2 Unordered sums.- 5.3 Absolute convergence and rearrangements.- 5.4 The Cauchy Product.- 5.5 Iterated sums.- 6 Periodic Functions.


- 6.1 The exponential function.- 6.2 The trigonometric functions.- 6.3 Periodicity and ?.- 6.4 The argument of a complex number.


- 6.5 The logarithm.- III Analysis.- 7 Sequences.- 7.1 Convergent sequences.- 7.2 Some important examples.


- 7.3 Bounded sequences.- 7.4 The Fundamental Theorem of Algebra.- 7.5 Unbounded sequences.- 7.6 Upper and lower limits.


- 8 Continuous Functions.- 8.1 Continuous functions.- 8.2 Functions continuous on an interval.- 8.3 Monotonic functions.- 8.


4 Uniform continuity.- 8.5 Uniform convergence.- 9 Derivatives.- 9.1 The derivative.- 9.2 The Chain Rule.


- 9.3 The Mean Value Theorem.- 9.4 Inverse functions.- 9.5 Power series.- 9.6 Taylor series.


- 10 Integration.- 10.1 The integral.- 10.2 Upper and lower integrals.- 10.3 Integrable functions.- 10.


4 Integration and differentiation.- 10.5 Improper integrals.- 10.6 Integration and differentiation of series.- 11 ?, ?, e, and n!.- 11.1 The number e.


- 11.2 The number ?.- 11.3 Euler's constant ?.- 11.4 Stirling's formula for n!.- 11.5 A series and an integral for ?.


- Appendix: Mathematical Induction.- References.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...