Chapter 1. Introduction and preview.- Chapter 2. Some basic notions in geometric group theory.- Chapter 3. Coxeter groups.- Chapter 4. More combinatorics of Coxeter groups.
- Chapter 5. The basic construction.- Chapter 6. Geometric reflection groups.- Chapter 7. The complex E.- Chapter 8. The algebraic topology of U and of E.
- Chapter 9. The fundamental group and the fundamental group at infinity.- Chapter 10. Actions on manifolds.- Chapter 11. The reflection group trick.- Chapter 12. E is CAT(0).
- Chapter 13. Rigidity.- Chapter 14. Free quotients and surface subgroups.- Chapter 15. Another look at (co)homology.- Chapter 16. The Euler characteristic.
- Chapter 17. Growth series.- Chapter 18. Artin Groups.- Chapter 19. L2-Betti numbers of Artin groups.- Chapter 20. Buildings.
- Chapter 21. Hecke - von Neumann algebras.- Chapter 22. Weighted L2- (co)homology.