Thermal Biophysics of Membranes
Thermal Biophysics of Membranes
Click to enlarge
Author(s): Heimburg, Thomas
ISBN No.: 9783527404711
Pages: 378
Year: 200709
Format: Trade Cloth (Hard Cover)
Price: $ 324.30
Status: Out Of Print

Preface.1 Membranes-An Introduction.1.1 Overton (1895).1.2 Langmuir (1917) and Gorter and Grendel (1925).1.3 Danielli and Davson (1935).


1.4 Robertson (1958).1.5 The Fluid Mosaic Model of Singer and Nicolson (1972).1.6 The Mattress Model by Mouritsen and Bloom (1984).1.7 Domain Formation and Protein Clusters.


1.8 Perspectives of this Book.1.9 Summary: Key Ideas of Chapter 1.2 Membrane Structure.2.1 Lipid Membrane Structure.2.


2 X-Ray Diffraction.2.3 Nonlamellar Lipid Phases.2.4 Summary: Key Ideas of Chapter 2.3 The Composition of Biological Membranes.3.1 Composition of Membranes.


3.2 Head Group Composition.3.3 Hydrocarbon Chain Composition.3.4 Asymmetry Across Membranes.3.5 Dependence of Lipid Composition on Growth Temperature.


3.6 Dependence of Lipid Composition on Pressure.3.7 Dependence of Lipid Composition on Changes in Other Thermodynamic Variables.3.8 Summary: Key Ideas of Chapter 3.4 Introduction Into Thermodynamics.4.


1 Functions of State.4.2 First Law of Thermodynamics.4.3 Second Law of Thermodynamics.4.4 Other Functions of State.4.


5 The Chemical Potential.4.6 The Gibbs-Duhem Equation.4.7 Chemical Equilibrium in Solutions.4.8 Statistical Interpretation of Entropy.4.


9 Statistical Averages.4.10 Heat Capacity and Elastic Constants.4.11 Maxwell Relations.4.12 Adiabatic Compressibility.4.


13 Thermodynamic Forces and Fluxes.4.14 Summary: Key Ideas of Chapter 4.5 Water.5.1 The Electrostatic Potential.5.2 The Electrostatic Potential in Electrolytes.


5.3 The Hydrophobic Effect.5.3.1 Temperature Dependence of the Hydrophobic Effect.5.4 TheWimley-White Hydrophobicity Scale.5.


5 Hydrophobic Matching.5.6 Hofmeister Series.5.7 Summary: Key Ideas of Chapter 5.6 Lipid Melting.6.1 Lipid Melting.


6.2 Cooperativity and Cooperative Unit Size.6.3 Influence of Pressure.6.4 Metastable States.6.5 Melting of Membranes Consisting of Lipid Mixtures.


6.6 Melting in Biological Membranes.6.7 Lipid Monolayers.6.8 Summary: Key Ideas of Chapter 6.7 Phase Diagrams.7.


1 Ideal Mixture.7.2 On the Number of Coexisting Phases.7.3 Regular Solution.7.4 Experimental Phase Diagrams.7.


5 Conclusions.7.6 Summary: Key Ideas of Chapter 7.8 Statistical Models for Lipid Melting.8.1 Monte Carlo Simulations.8.2 Magnitude of Fluctuations.


8.3 Simple Statistical Thermodynamics Model.8.4 Monte Carlo Simulations.8.5 Derivation of the Partition Function for a Known Distribution of all States: The Ferrenberg-Swendsen Method.8.6 Two-Component Membranes.


8.7 Local Fluctuations at Domain Boundaries.8.8 The 10-State Pink Model.8.9 Molecular Dynamics.8.10 Summary: Key Ideas of Chapter 8.


9 Lipid-Protein Interactions.9.1 Hydrophobic Matching.9.2 Integral Proteins.9.3 Binding of Peripheral Proteins to One-ComponentMembranes.9.


4 Action of Phospholipases on Membrane Domains.9.5 Domains and "Rafts" in Biological Membranes.9.6 Summary: Key Ideas of Chapter 9.10 Diffusion.10.1 Percolation.


10.2 Diffusion Models.10.3 Diffusion of Lipids and Proteins.10.4 Summary: Key Ideas of Chapter 10.11 Electrostatics.11.


1 Diffuse Double Layer-Gouy-Chapman Theory.11.2 Potential and Free Energy of Membranes.11.3 Influence of Electrostatics on Melting Temperatures of Membranes.11.4 Titration of Charged Lipid Membranes with Protons.11.


5 Binding o.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...