1 : Manifolds and Maps.- 0. Submanifolds of ?n+k.- 1. Differential Structures.- 2. Differentiable Maps and the Tangent Bundle.- 3.
Embeddings and Immersions.- 4. Manifolds with Boundary.- 5. A Convention.- 2 : Function Spaces.- 1. The Weak and Strong Topologies on Cr(M, N).
- 2. Approximations.- 3. Approximations on ?-Manifolds and Manifold Pairs.- 4. Jets and the Baire Property.- 5. Analytic Approximations.
- 3 : Transversality.- 1. The Morse-Sard Theorem.- 2. Transversality.- 4 : Vector Bundles and Tubular Neighborhoods.- 1. Vector Bundles.
- 2. Constructions with Vector Bundles.- 3. The Classification of Vector Bundles.- 4. Oriented Vector Bundles.- 5. Tubular Neighborhoods.
- 6. Collars and Tubular Neighborhoods of Neat Submanifolds.- 7. Analytic Differential Structures.- 5 : Degrees, Intersection Numbers, and the Euler Characteristic.- 1. Degrees of Maps.- 2.
Intersection Numbers and the Euler Characteristic.- 3. Historical Remarks.- 6 : Morse Theory.- 1. Morse Functions.- 2. Differential Equations and Regular Level Surfaces.
- 3. Passing Critical Levels and Attaching Cells.- 4. CW-Complexes.- 7 : Cobordism.- 1. Cobordism and Transversality.- 2.
The Thorn Homomorphism.- 8 : Isotopy.- 1. Extending Isotopies.- 2. Gluing Manifolds Together.- 3. Isotopies of Disks.
- 9 : Surfaces.- 1. Models of Surfaces.- 2. Characterization of the Disk.- 3. The Classification of Compact Surfaces.