Machine Design
Machine Design
Click to enlarge
Author(s): Norton, Robert
Norton, Robert L.
ISBN No.: 9780133356717
Pages: 1,104
Year: 201309
Format: Trade Cloth (Hard Cover)
Price: $ 404.78
Status: Out Of Print

Preface Part I Fundamentals Chapter 1 Introduction to Design 1.1 Design Machine Design Machine Iteration 1.2 A Design Process 1.3 Problem Formulation and Calculation Definition Stage Preliminary Design Stage Detailed Design Stage Documentation Stage 1.4 The Engineering Model Estimation and First-Order Analysis The Engineering Sketch 1.5 C omputer-Aided Design and Engineering Computer-Aided Design (CAD) Computer-Aided Engineering (CAE) Computational Accuracy 1.6 The Engineering Report 1.7 Factors of Safety and Design Codes Factor of Safety Choosing a Safety Factor Design and Safety Codes 1.


8 Statistical Considerations 1.9 Units 1.10 Summary 1.11 References 1.12 Web References 1.13 Bibliography 1.14 Problems Chapter 2 Materials and Processes 2.0 Introduction 2.


1 Material-Property Definitions The Tensile Test Ductility and Brittleness The Compression Test The Bending Test The Torsion Test Fatigue Strength and Endurance Limit Impact Resistance Fracture Toughness Creep and Temperature Effects 2.2 The Statistical Nature of Material Properties 2.3 Homogeneity and Isotropy 2.4 Hardness Heat Treatment Surface (Case) Hardening Heat Treating Nonferrous Materials Mechanical Forming and Hardening 2.5 Coatings and Surface Treatments Galvanic Action Electroplating Electroless Plating Anodizing Plasma-Sprayed Coatings Chemical Coatings 2.6 General Properties of Metals Cast Iron Cast Steels Wrought Steels Steel Numbering Systems Aluminum Titanium Magnesium Copper Alloys 2.7 General Properties of Nonmetals Polymers Ceramics Composites 2.8 Selecting Materials 2.


9 Summary 2.10 References 2.11 Web References 2.12 Bibliography 2.13 Problems Chapter 3 Kinematics and Load Determination 3.0 Introduction 3.1 Degree of Freedom 3.2 Mechanisms 3.


3 Calculating Degree of Freedom (Mobility) 3.4 Common 1-DOF Mechanisms Fourbar Linkage and the Grashof Condition Sixbar Linkage Cam and Follower 3.5 Analyzing Linkage Motion Types of Motion Complex Numbers as Vectors The Vector Loop Equation 3.6 Analyzing the Fourbar Linkage Solving for Position in the Fourbar Linkage Solving for Velocity in the Fourbar Linkage Solving for Acceleration in the Fourbar Linkage 3.7 Analyzing the Fourbar Crank-Slider Solving for Position in the Fourbar Crank-Slider Solving for Velocity in the Fourbar Crank-Slider Solving for Acceleration in the Fourbar Crank-Slider Other Linkages 3.8 Cam Design and Analysis The Timing Diagram The svaj Diagram Polynomials for the Double-Dwell Case Polynomials for the Single-Dwell Case Pressure Angle Radius of Curvature 3.9 Loading Classes For Force Analysis 3.10 Free-body Diagrams 3.


11 Load Analysis Three-Dimensional Analysis Two-Dimensional Analysis Static Load Analysis 3.12 Two-Dimensional, Static Loading Case Studies 3.13 Three-Dimensional, Static Loading Case Study 3.14 Dynamic Loading Case Study 3.15 Vibration Loading Natural Frequency Dynamic Forces 3.16 Impact Loading Energy Method 3.17 Beam Loading Shear and Moment Singularity Functions Superposition 3.18 Summary 3.


19 References 3.20 Web References 3.21 Bibliography 3.22 Problems Chapter 4 Stress, Strain, and Deflection 4.0 Introduction 4.1 Stress 4.2 Strain 4.3 Principal Stresses 4.


4 Plane Stress and Plane Strain Plane Stress Plane Strain 4.5 Mohr''s Circles 4.6 Applied Versus Principal Stresses 4.7 Axial Tension 4.8 Direct Shear Stress, Bearing Stress, and Tearout Direct Shear Direct Bearing Tearout Failure 4.9 Beams and Bending Stresses Beams in Pure Bending Shear Due to Transverse Loading 4.10 Deflection in Beams Deflection by Singularity Functions Statically Indeterminate Beams 4.11 Castigliano''s Method Deflection by Castigliano''s Method Finding Redundant Reactions with Castigliano''s Method 4.


12 Torsion 4.13 Combined Stresses 4.14 Spring Rates 4.15 Stress Concentration Stress Concentration Under Static Loading Stress Concentration Under Dynamic Loading Determining Geometric Stress-Concentration Factors Designing to Avoid Stress Concentrations 4.16 Axial Compression - Columns Slenderness Ratio Short Columns Long Columns End Conditions Intermediate Columns 4.17 S tresses in Cylinders Thick-Walled Cylinders Thin-Walled Cylinders 4.18 Case Studies in Static Stress and Deflection Analysis 4.19 Summary 4.


20 References 4.21 Bibliography 4.22 Problems Chapter 5 Static Failure Theories 5.0 Introduction 5.1 Failure of Ductile Materials Under Static Loading The von Mises-Hencky or Distortion-Energy Theory The Maximum Shear-Stress Theory The Maximum Normal-Stress Theory Comparison of Experimental Data with Failure Theories 5.2 Failure of Brittle Materials Under Static Loading Even and Uneven Materials The Coulomb-Mohr Theory The Modified-Mohr Theory 5.3 Fracture Mechanics Fracture-Mechanics Theory Fracture Toughness Kc 5.4 Using The Static Loading Failure Theories 5.


5 Case Studies in Static F.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...