Preface xv 1. Physics of Bulk Solids 1 1.1 Structure 1 1.1.1 Size Dependence of Properties 1 1.1.2 Crystal Structures 2 1.1.
3 Face-Centered Cubic Nanoparticles 7 1.1.4 Large Face-Centered Cubic Nanoparticles 9 1.1.5 Tetrahedrally Bonded Semiconductor Structures 10 1.1.6 Lattice Vibrations 14 1.2 Surfaces of Crystals 16 1.
2.1 Surface Characteristics 16 1.2.2 Surface Energy 17 1.2.3 Face-Centered Cubic Surface Layers 18 1.2.4 Surfaces of Zinc Blende and Diamond Structures 21 1.
2.5 Adsorption of Gases 23 1.2.6 Electronic Structure of a Surface 25 1.2.7 Surface Quantum Well 26 1.3 Energy Bands 26 1.3.
1 Insulators, Semiconductors, and Conductors 26 1.3.2 Reciprocal Space 27 1.3.3 Energy Bands and Gaps of Semiconductors 28 1.3.4 Effective Mass 34 1.3.
5 Fermi Surfaces 35 1.4 Localized Particles 36 1.4.1 Donors, Acceptors, and Deep Traps 36 1.4.2 Mobility 37 1.4.3 Excitons 38 Problems 40 References 41 2.
Methods of Measuring Properties of Nanostructures 43 2.1 Introduction 43 2.2 Structure 44 2.2.1 Atomic Structures 44 2.2.2 Crystallography 45 2.2.
3 Particle Size Determination 50 2.2.4 Surface Structure 54 2.3 Microscopy 54 2.3.1 Transmission Electron Microscopy 54 2.3.2 Field Ion Microscopy 59 2.
3.3 Scanning Microscopy 59 2.4 Spectroscopy 66 2.4.1 Infrared and Raman Spectroscopy 66 2.4.2 Photoemission, X-Ray, and Auger Spectroscopy 72 2.4.
3 Magnetic Resonance 78 2.5 Various Bulk Properties 81 2.5.1 Mechanical Properties 81 2.5.2 Electrical Properties 81 2.5.3 Magnetic Properties 82 2.
5.4 Other Properties 82 Problems 82 References 83 3. Properties of Individual Nanoparticles 85 3.1 Introduction 85 3.2 Metal Nanoclusters 86 3.2.1 Magic Numbers 86 3.2.
2 Theoretical Modeling of Nanoparticles 88 3.2.3 Geometric Structure 91 3.2.4 Electronic Structure 94 3.2.5 Reactivity 97 3.2.
6 Fluctuations 100 3.2.7 Magnetic Clusters 100 3.2.8 Bulk-to-Nano Transition 103 3.3 Semiconducting Nanoparticles 104 3.3.1 Optical Properties 104 3.
3.2 Photofragmentation 106 3.3.3 Coulomb Explosion 107 3.4 Rare-Gas and Molecular Clusters 107 3.4.1 Inert-Gas Clusters 107 3.4.
2 Superfluid Clusters 108 3.4.3 Molecular Clusters 109 3.4.4 Nanosized Organic Crystals 111 3.5 Methods of Synthesis 111 3.5.1 RF Plasma 111 3.
5.2 Chemical Methods 111 3.5.3 Thermolysis 112 3.5.4 Pulsed-Laser Methods 114 3.5.5 Synthesis of Nanosized Organic Crystals 114 3.
6 Summary 118 Problems 118 4. The Chemistry of Nanostructures 121 4.1 Chemical Synthesis of Nanostructures 121 4.1.1 Solution Synthesis 121 4.1.2 Capped Nanoclusters 122 4.1.
3 Solgel Processing 124 4.1.4 Electrochemical Synthesis of Nanostructures 125 4.2 Reactivity of Nanostructures 125 4.3 Catalysis 127 4.3.1 Nature of Catalysis 127 4.3.
2 Surface Area of Nanoparticles 127 4.3.3 Porous Materials 131 4.4 Self-Assembly 135 4.4.1 The Self-Assembly Process 135 4.4.2 Semiconductor Islands 136 4.
4.3 Monolayers 139 Problems 141 5. Polymer and Biological Nanostructures 143 5.1 Polymers 143 5.1.1 Polymer Structure 143 5.1.2 Sizes of Polymers 146 5.
1.3 Nanocrystals of Polymers 148 5.1.4 Conductive Polymers 151 5.1.5 Block Copolymers 152 5.2 Biological Nanostructures 154 5.2.
1 Sizes of Biological Nanostructures 154 5.2.2 Polypeptide Nanowire and Protein Nanoparticles 160 5.2.3 Nucleic Acids 162 5.2.3.1 DNA Double Nanowire 162 5.
2.3.2 Genetic Code and Protein Synthesis 166 5.2.3.3 Proteins 167 5.2.3.
4 Micelles and Vesicles 169 5.2.3.5 Multilayer Films 172 Problems 174 References 174 6. Cohesive Energy 177 6.1 Ionic Solids 177 6.2 Defects in Ionic Solids 183 6.3 Covalently Bonded Solids 185 6.
4 Organic Crystals 186 6.5 Inert-Gas Solids 190 6.6 Metals 191 6.7 Conclusion 193 Problems 193 7. Vibrational Properties 195 7.1 The Finite One-Dimensional Monatomic Lattice 195 7.2 Ionic Solids 197 7.3 Experimental Observations 199 7.
3.1 Optical and Acoustical Modes 199 7.3.2 Vibrational Spectroscopy of Surface Layers of Nanoparticles 201 7.3.2.1 Raman Spectroscopy of Surface Layers 201 7.3.
2.2 Infrared Spectroscopy of Surface Layers 201 7.4 Phonon Confinement 207 7.5 Effect of Dimension on Lattice Vibrations 209 7.6 Effect of Dimension on Vibrational Density of States 211 7.7 Effect of Size on Debye Frequency 215 7.8 Melting Temperature 216 7.9 Specific Heat 218 7.
10 Plasmons 220 7.11 Surface-Enhanced Raman Spectroscopy 222 7.12 Phase Transitions 223 Problems 226 References 227 8. Electronic Properties 229 8.1 Ionic Solids 229 8.2 Covalently Bonded Solids 232 8.3 Metals 234 8.3.
1 Effect of Lattice Parameter on Electronic Structure 235 8.3.2 Free-Electron Model 235 8.3.3 The Tight-Binding Model 239 8.4 Measurements of Electronic Structure of Nanoparticles 242 8.4.1 Semiconducting Nanoparticles 242 8.
4.2 Organic Solids 248 8.4.3 Metals 250 Problems 251 9. Quantum Wells, Wires, and Dots 253 9.1 Introduction 253 9.2 Fabricating Quantum Nanostructures 253 9.2.
1 Solution Fabrication 254 9.2.2 Lithography 257 9.3 Size and Dimensionality Effects 261 9.3.1 Size Effects 261 9.3.2 Size Effects on Conduction Electrons 263 9.
3.3 Conduction Electrons and Dimensionality 264 9.3.4 Fermi Gas and Density of States 265 9.3.5 Potential Wells 268 9.3.6 Partial Confinement 272 9.
3.7 Properties Dependent on Density of States 273 9.4 Excitons 275 9.5 Single-Electron Tunneling 276 9.6 Applications 280 9.6.1 Infrared Detectors 280 9.6.
2 Quantum Dot Lasers 280 Problems 285 References 285 10. Carbon Nanostructures 287 10.1 Introduction 287 10.2 Carbon Molecules 287 10.2.1 Nature of the Carbon Bond 287 10.2.2 New Carbon Structures 289 10.
3 Carbon Clusters 289 10.3.1 Small Carbon Clusters 289 10.3.2 Buckyball 292 10.3.3 The Structure of Molecular C60 293 10.3.
4 Crystalline C60 296 10.3.5 Larger and Smaller Buckyballs 300 10.3.6 Buckyballs of Other Atoms 300 10.4 Carbon Nanotubes 301 10.4.1 Fabrication 301 10.
4.2 Structure 304 10.4.3 Electronic Properties 306 10.4.4 Vibrational Properties 312 10.4.5 Functionalization 314 10.
4.6 Doped Carbon Nanotubes 322 10.4.7 Mechanical Properties 325 10.5 Nanotube Composites 327 10.5.1 Polymer-Carbon Nanotube Composites 327 10.5.
2 Metal-Carbon Nanotube Composites 329 10.6 Graphene Nanostructures 330 Problems 335 11. Bulk Nanostructured Materials 337 11.1 Solid Methods for Preparation of Disordered Nanostructures 337 11.1.1 Methods of Synthesis 337 11.1.2 Metal Nanocluster Composite Glasses 340 11.
1.3 Porous Silicon 343 11.2 Nanocomposites 347 11.2.1 Layered Nanocomposites 347 11.2.2 Nanowire Composites 349 11.2.
3 Composites of Nanoparticles 350 11.3 Nanostructured Crystals 351 11.3.1 Natural Nanocrystals 351 11.3.2 Crystals of Metal Nanoparticles 352 11.3.3 Arrays of Nanoparticles in Zeolites 355 11.
3.4 Nanoparticle Lattices in Colloidal Suspensions 357 11.3.5 Computational Prediction of Cluster Lattices 358 11.4 Electrical Conduction in Bulk Nanostructured Materials 359 11.4.1 Bulk Materials Consisting of Nanosized Grains 359 11.4.
2 Nanometer-Thick Amorphous Films 364 11.5 Other Properties 364 Problems 365 12. Mechanical Properties of Nanostructured Materials 367 12.1 Stress-Strain Behavior of Materials 367 12.2 Failure Mechanisms of Conventional Grain-Sized Materials 370 12.3 Mechanical Properties of Consolidated Nano-Grained Materials 371 12.4 Nanostructured Multilayers 374 12.5 Mechanical and Dynamical Properties of Nanosized Devices 376 12.
5.1 General Considerations 376 12.5.2 Nanopendulum 378 12.5.3 Vibrations of a Nanometer String 380 12.5.4 The Nanospring 381 12.
5.5 The Clamped Beam 382 12.5.6 The Challenges and Possibilities of Nanomechanical Sensors 385 12.5.7 Methods of Fabrication of Nanosized Devices 387 Problems 390 13. Magnetism in Nanostructures 393 13.1 Basics of Ferromagnetism 393 13.
2 Behavior of Powders of Ferromagnetic Nanoparticles 398 13.2.1 Properties of a Single Ferromagnetic Nanoparticle 398 13.2.2 Dynamics of Individual Magnetic Nanoparticles 400 13.2.3 Measurements of Superparamagnetism and the Blocking Temperature 402 13.2.
4 Nanopore Containment of Magnetic Particles 405 13.3 Ferrofluids 406 13.4 Bulk Nanostructured Magnetic Materials 413 13.4.1 Effect of Nanosized Grain Structure on Magnetic Properties 413 13.4.2 Magnetoresistive Materials 416 13.4.
3 Carbon Nanostructured Ferromagnets 424 13.5 Antiferromagnetic Nanoparticles 42.