1. Introduction.- 2. Prelude: Finite Dimensional Systems.- Part I Algebraic Theory: Uniform Fluxes.- 3. Simplices in Affine Spaces and Their Boundaries.- 4.
Uniform Fluxes in Affine Spaces.- 5. From Uniform Fluxes to Exterior Algebra.- Part II: Smooth Theory.- 6. Smooth Analysis on Manifolds: A Short Review.- 7. Interlude: Smooth Distributions of Defects.
- 8. Smooth Fluxes.- 9. Frames, Body Points, and Spacetime Structure.- 10. Stresses.- 11. Smooth Electromagnetism on Manifolds.
- 12. The Elasticity Problem.- 13. Symmetry and Dynamics.- Part III Non-Smooth, Global Theories.- 14. Banachable Space of Sections of Vector Bundles over Compact Manifolds.- 15.
Manifolds of Sections and Embeddings.- 16. The General Framework for Global Analytic Stress Theory.- 17. Dual Spaces Corresponding to Spaces of Differentiable Sections of a Vector Bundle: Localization of Sections and Functionals.- 18. de Rham Currents.- 19.
Interlude: Singular Distributions of Defects in Bodies.- 20. Vector-Valued Currents.- 21. The Representation of Forces by Stresses and Hyperstresses.- 22. Simple Forces and Stresses.- 23.
Whitney's Geometric Integration Theory and Non-Smooth Bodies.- 24. Optimal Fields and Load Capacity of Bodies.- Index.