Emerging Photovoltaic Materials : Silicon and Beyond
Emerging Photovoltaic Materials : Silicon and Beyond
Click to enlarge
Author(s): Tiwari, Ashutosh
ISBN No.: 9781119407546
Pages: 828
Year: 201812
Format: Trade Cloth (Hard Cover)
Price: $ 433.25
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

Preface xxi Part 1 Silicon Photovoltaics 1 1 Emergence of Continuous Czochralski (CCZ) Growth for Monocrystalline Silicon Photovoltaics 3 Santosh K. Kurinec, Charles Bopp and Han Xu 1.1 Introduction 4 1.1.1 The Czochralski (CZ) Process 5 1.1.2 Continuous Czochralski Process (CCZ) 11 1.2 Continuous Czochralski Process Implementations 13 1.


3 Solar Cells Fabricated Using CCZ Ingots 15 1.3.1 n-Type Mono-Si High-Efficiency Cells 15 1.3.2 Gallium-Doped p-Type Silicon Solar Cells 17 1.4 Conclusions 19 References 19 2 Materials Chemistry and Physics for Low-Cost Silicon Photovoltaics 23 Tingting Jiang and George Z. Chen 2.1 Introduction 24 2.


2 Crystalline Silicon in Traditional/Classic Solar Cells 26 2.2.1 Manufacturing of Silicon Solar Cell 26 2.2.2 Efficiency Loss in Silicon Solar Cell 29 2.2.3 New Strategies for the Silicon Solar Cell 32 2.3 Low-Cost Crystalline Silicon 33 2.


3.1 Metallurgical Silicon 33 2.3.2 Upgraded Metallurgical-Grade Silicon 33 2.3.2.1 Properties of Upgraded Metallurgical-Grade Silicon 34 2.3.


2.2 Production of Upgraded Metallurgical-Grade Silicon 35 2.3.2.3 Development of Upgraded Metallurgical-Grade Silicon Solar Cells 36 2.3.3 High-Performance Multicrystalline Silicon 37 2.3.


3.1 Crystal Growth 37 2.3.3.2 Material Properties of High-Performance Multicrystalline Silicon 39 2.3.3.3 Solar Cell Based on High-Performance Multicrystalline Silicon 40 2.


4 Advanced p-Type Silicon--in Passivated Emitter and Rear Cell (PERC) 41 2.4.1 Passivated Emitter Solar Cells 41 2.4.1.1 Passivated Emitter Solar Cell (PESC) 41 2.4.1.


2 Passivated Emitter and Rear Cell 42 2.4.1.3 Passivated Emitter, Rear Locally Diffused Solar Cells 43 2.4.1.4 Passivated Emitter, Rear Totally Diffused Solar Cells 44 2.4.


2 Surface Passivation 45 2.5 Advanced n-Type Silicon 46 2.5.1 Interdigitated Back Contact (IBC) Solar Cell 47 2.5.2 Silicon Heterojunction (SHJ) Solar Cells 50 2.5.2.


1 The Device Structure and the Advantages of HIT Solar Cells 51 2.5.2.2 Strategies of Achieving High-Efficiency HIT Solar Cell 52 2.6 Conclusion 53 References 54 3 Recycling Crystalline Silicon Photovoltaic Modules 61 Pablo Dias and Hugo Veit 3.1 Waste Electrical and Electronic Equipment 62 3.2 Photovoltaic Modules 65 3.2.


1 First-Generation Photovoltaic Modules 66 3.3 Recyclability of Waste Photovoltaic Modules 69 3.3.1 Frame 70 3.3.2 Superstrate (Front Glass) 71 3.3.3 Metallic Filaments (Busbars) 72 3.


3.4 Photovoltaic Cell 73 3.3.5 Polymers 74 3.3.6 Recyclability Summary 75 3.4 Separation and Recovery of Materials The Recycling Process 76 3.4.


1 Mechanical and Physical Processes 76 3.4.1.1 Shredding 77 3.4.1.2 Sieving 77 3.4.


1.3 Density Separation 79 3.4.1.4 Manual Separation 82 3.4.1.5 Electrostatic Separation 82 3.


4.2 Thermal Processes--Polymers 84 3.4.3 Separation Using Organic Solvents 86 3.4.4 Pyrometallurgy 90 3.4.5 Hydrometallurgy 90 3.


4.6 Electrometallurgy 93 3.5 New Trends in the Recycling Processes 94 References 98 Part 2 Emerging Photovoltaic Materials 103 4 Photovoltaics in Ferroelectric Materials Origin, Challenges and Opportunities 105 Charles Paillard, Grégory Geneste, Laurent Bellaiche, Jens Kreisel, Marvin Alexe and Brahim Dkhil 4.1 Physics of the Photovoltaic Effect in Ferroelectrics 106 4.1.1 Conventional Photovoltaic Technologies 106 4.1.1.


1 The p-n Junction 106 4.1.1.2 The Shockley-Queisser Limit 109 4.1.2 Mechanisms of the Photovoltaic Effect in Ferroelectric Materials 110 4.1.2.


1 The Bulk Photovoltaic Effect 110 4.1.2.2 Barrier Effects 118 4.2 Opportunities and Challenges of Photoferroelectrics 123 4.2.1 To Switch or not to Switch 124 4.2.


1.1 Switchability 124 4.2.1.2 Influence of Defects 125 4.2.2 The Bandgap Problem 127 4.2.


3 Application of Light-Induced Effects in Ferroelectrics Beyond Solar Cells 129 4.2.3.1 Photovoltaics and ICTs 130 4.2.3.2 Photo-Induced Strain Toward Optically Controlled Actuators 130 4.2.


3.3 Photochemistry for Clean Energy and Environment 131 4.3 Conclusions 133 Acknowledgements 134 References 134 5 Tin-Based Novel Cubic Chalcogenides A New Paradigm for Photovoltaic Research 141 Sajid Ur Rehman, Faheem K. Butt, Zeeshan Tariq and Chuanbo Li 5.1 Introduction 142 5.2 Cubic Tin Sulfide (π-SnS) 145 5.2.1 Application π-SnS in Solar Cells 145 5.


2.2 Application of π-SnS in Optical Devices 147 5.3 Cubic Tin Selenide (π-SnSe) 153 5.3.1 Application of π-SnSe in Solar Cells 153 5.3.2 Application of π-SnSe in Optical Devices 154 5.4 Cubic Tin Telluride (π-SnTe) 157 5.


4.1 Application of π-SnTe in Optical Devices 158 5.5 Conclusion 160 Acknowledgement 160 References 161 6 Insights into the Photovoltaic and Photocatalytic Activity of Cu-, Al-, and Tm-Doped TiO2 165 Antonio Sánchez-Coronilla, Javier Navas, Elisa I. Martín, Teresa Aguilar, Juan Jesús Gallardo, Desireé de los Santos, Rodrigo Alcántara and Concha Fernández-Lorenzo 6.1 Introduction 166 6.2 Materials and Methods 167 6.2.1 Experimental 167 6.


2.2 Computational Framework 169 6.3 Cu-TiO2 Doping 170 6.3.1 Photovoltaics of the DSSCs 175 6.4 Al-TiO2 Doping 177 6.5 Tm-TiO2 Doping 181 6.5.


1 Photovoltaic Characterization 184 6.5.2 Photocatalytic Activity 186 6.6 Conclusions 187 References 189 7 Theory of the Photovoltaic and Light-Induced Effects in Multiferroics 195 Bruno Mettout and Pierre Tolédano 7.1 Insufficiency of the Traditional Approach to the Bulk Photovoltaic Effect 196 7.2 Theoretical Approach to the Photovoltaic and Light-Induced Effects 197 7.3 Response Functions under Linearly Polarized Light 199 7.3.


1 Mean Symmetry of the Light Beam 199 7.3.2 Response Functions 202 7.3.2.1 Achiral and Nonmagnetic Materials 202 7.3.2.


2 Chiral and Magnetic Materials 205 7.4 Selection Procedures 206 7.4.1 External Selection 206 7.4.2 Internal Selection 208 7.5 Application of the Theory to the Photovoltaic and Photo-Induced Effects in LiNbO3 210 7.5.


1 Second-Order Photovoltaic Effect 210 7.5.2 Photovoltaic Effects in LiNbO3 212 7.5.3 Optical Rectification, Photomagnetic, and Photo-Toroidal First-Order Effects 215 7.5.4 First-Order Photoelastic and Photo-Magnetoelectric Effects 216 7.6 Magnetoelectric, Photovoltaic, and Magneto-Photovoltaic Effects in KBiFe2O5 218 7.


6.1 Magnetoelectric Effects in KBiFe2O5 in Absence of Illumination 218 7.6.2 Photovoltaic and Magneto-Photovoltaic Effects in KBiFe2O5 220 7.7 Photo-Magnetoelectric and Magneto-Photovoltaic Effects in BiFeO3 224 7.7.1 Photo-Magnetoelectric Effects 224 7.7.


2 Photovoltaic Effects in BiFeO3 226 7.7.3 Magneto-Photovoltaic Effects in BiFeO3 227 7.8 Photorefractive and Photo-Hall Effects in Tungsten Bronzes 229 7.8.1 The Photorefractive Effect 230 7.8.2 The Photo-Hall Effect 231 7.


9 Summary and Conclusion 234 Acknowledgement 235 References 235 8 Multication Transparent Conducting Oxides: Tunable Materials for Photovoltaic Applications 239 Peediyekkal Jayaram 8.1 Introduction 239 8.2 Multication Film Growth and Analysis 243 8.3 Structural Analysis 244 8.4 Raman Spectra 247 8.5 Surface Morphology (AFM) 248 8.6 Optical Properties UV-Vis Transmittance Spectra 248 8.7 Electrical Properties 253 8.


8 Conclusion 257 References 258 Part 3 Perovskite Solar Cells 261 9 Perovskite Solar Cells Promises and Challenges 263 Qiong Wang and Antonio Abate 9.1 The Scientific and Technological Background 264 9.1.1 The Share of Silicon Solar Cells and Thin Film Solar Cells in Photovoltaic Market 264 9.1.2 The Bottleneck of Dye-Sensitized Solar Cells and Organic Solar Cells 266 9.1.3 From a Cost-Effective Alternative to the Highly Efficient Solution 269 9.


2 The Fast Development of PSCs 270 9.2.1 The Fundamental Optoelectronic Properties of Hybrid Organic-Inorganic Lead Halide Perovskite Materials 271 9.2.1.1 Optical Properties 272 9.2.1.


2 Electronic Properties 276 9.2.2 Composition Adjustment of Perovskite 288 9.2.2.1 Mixed Halides 288 9.2.2.


2 Multi-Cations 292 9.2.2.3 Phase Segregation 297 9.2.3 Versatile Deposition Methods of Perovskite Film 297 9.2.3.


1 Solution-Processed Methods 298 9.2.3.2 Vapor Deposition Methods 306 9.2.4 Charge Selective Contacts in PSCs 308 9.2.4.


1 Electron Selective Contacts 309 9.2.4.2 Hole Selective Contacts 311 9.2.5 Evaluation of PSCs 315 9.2.5.


1 J-V curve 315 9.2.5.2 Maximum Power Point Tracking (MPPT) 316 9.2.6 The Systematic Understanding of PSCs 318 9.2.6.


1 Moisture Vulnerability of Perovskite Materials 318 9.2.6.2 The Role of Grain Boundaries 318 9.2.6.3 Ion Migration and Hysteresis 322 9.2.


6.4 Interface/Bulk Defects and Passivation 324 9.2.7 PSCs in a Tandem 328 9.2.7.1 Structures of Perovskite Tandem Cells 328 9.2.


7.2 Transparent Cont.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...