Infrared Thermal Imaging : Fundamentals, Research and Applications
Infrared Thermal Imaging : Fundamentals, Research and Applications
Click to enlarge
Author(s): Möllmann, Klaus-Peter
Möllmann, Klaus-Peter
Vollmer, Michael
ISBN No.: 9783527413515
Pages: 794
Year: 201802
Format: Trade Cloth (Hard Cover)
Price: $ 342.17
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

Preface to Second Edition XVII Preface to First Edition XIX List of Acronyms XXIII 1 Fundamentals of Infrared Thermal Imaging 1 1.1 Introduction 1 1.2 Infrared Radiation 6 1.2.1 ElectromagneticWaves and the Electromagnetic Spectrum 6 1.2.2 Basics of Geometrical Optics for Infrared Radiation 10 1.2.


2.1 Geometric Properties of Reflection and Refraction 10 1.2.2.2 Specular and Diffuse Reflection 12 1.2.2.3 Portion of Reflected and Transmitted Radiation: Fresnel Equations 12 1.


3 Radiometry and Thermal Radiation 14 1.3.1 Basic Radiometry 15 1.3.1.1 Radiant Power, Excitance, and Irradiance 15 1.3.1.


2 Spectral Densities of Radiometric Quantities 15 1.3.1.3 Solid Angles 16 1.3.1.4 Radiant Intensity, Radiance, and Lambertian Emitters 17 1.3.


1.5 Radiation Transfer between Surfaces: Fundamental Law of Radiometry and View Factor 20 1.3.2 Blackbody Radiation 21 1.3.2.1 Definition 21 1.3.


2.2 Planck Distribution Function for Blackbody Radiation 22 1.3.2.3 Different Representations of Planck''s Law 24 1.3.2.4 Stefan-Boltzmann Law 26 1.


3.2.5 Band Emission 26 1.3.2.6 Order-of-Magnitude Estimate of Detector Sensitivities of IR Cameras 29 1.4 Emissivity 31 1.4.


1 Definition 31 1.4.2 Classification of Objects according to Emissivity 32 1.4.3 Emissivity and Kirchhoff''s Law 32 1.4.4 Parameters Affecting Emissivity Values 34 1.4.


4.1 Material 34 1.4.4.2 Irregular Surface Structure 34 1.4.4.3 Viewing Angle 35 1.


4.4.4 Regular Geometry Effects 39 1.4.4.5 Wavelength 41 1.4.4.


6 Temperature 42 1.4.4.7 Conclusion 43 1.4.5 Techniques toMeasure/Guess Emissivities for PracticalWork 44 1.4.6 Blackbody Radiators: Emissivity Standards for Calibration Purposes 45 1.


5 Optical Material Properties in IR 49 1.5.1 Attenuation of IR Radiation while Passing throughMatter 50 1.5.2 Transmission of Radiation through the Atmosphere 51 1.5.3 Transmission of Radiation through Slablike SolidMaterials 54 1.5.


3.1 Nonabsorbing Slabs 54 1.5.3.2 Absorbing Slabs 55 1.5.4 Examples of Transmission Spectra of Optical Materials for IR Thermal Imaging 56 1.5.


4.1 Gray Materials in Used IR Spectral Ranges 56 1.5.4.2 Some Selective Absorbers 61 1.6 Thin Film Coatings: IR Components with Tailored Optical Properties 62 1.6.1 Interference ofWaves 63 1.


6.2 Interference and Optical Thin Films 64 1.6.3 Examples of AR Coatings 65 1.6.4 Other Optical Components 66 1.7 Some Notes on the History of Infrared Science and Technology 69 1.7.


1 Infrared Science 69 1.7.1.1 Discovery of Heat Rays and Atmospheric Absorption 69 1.7.1.2 Blackbodies and Blackbody Radiation 72 1.7.


1.3 Radiation Laws 73 1.7.2 Development of Infrared Technology 76 1.7.2.1 Prerequisites for IR Imaging 77 1.7.


2.2 Quantitative Measurements 84 1.7.2.3 Applications and Imaging Techniques 88 References 97 2 Basic Properties of IR Imaging Systems 107 2.1 Introduction 107 2.2 Detectors and Detector Systems 107 2.2.


1 Parameters That Characterize Detector Performance 108 2.2.2 Noise Equivalent Temperature Difference 110 2.2.3 Thermal Detectors 111 2.2.3.1 Temperature Change of Detector 111 2.


2.3.2 Temperature-Dependent Resistance of Bolometer 112 2.2.3.3 NEP and D* forMicrobolometer 113 2.2.4 Photon Detectors 117 2.


2.4.1 Principle of Operation and Responsivity 117 2.2.4.2 D* for Signal-Noise-Limited Detection 119 2.2.4.


3 D* for Background Noise Limited Detection 120 2.2.4.4 Necessity to Cool Photon Detectors 123 2.2.5 Types of Photon Detectors 125 2.2.5.


1 Photoconductors 125 2.2.5.2 Photodiodes 126 2.2.5.3 Schottky Barrier Detectors 128 2.2.


5.4 Quantum Well IR Photodetectors 128 2.2.5.5 Recent Developments in IR Detector Technology 132 2.3 Basic Measurement Process in IR Imaging 142 2.3.1 Radiometric Chain 142 2.


3.2 Wavebands for Thermal Imaging 146 2.3.3 Selecting the AppropriateWaveband for Thermal Imaging 147 2.3.3.1 Total Detected Amount of Radiation 148 2.3.


3.2 Temperature Contrast-Radiation Changes upon Temperature Changes 151 2.3.3.3 Influence of Background Reflections 155 2.3.3.4 Influence of Emissivity and Emissivity Uncertainties 158 2.


3.3.5 Potential use of Bolometers in MWor SWband 168 2.4 Complete Camera Systems 173 2.4.1 Camera Design - Image Formation 173 2.4.1.


1 Scanning Systems 174 2.4.1.2 Staring Systems-Focal-Plane Arrays 176 2.4.1.3 Nonuniformity Correction 180 2.4.


1.4 Bad Pixel Correction 186 2.4.2 Photon Detector versus Bolometer Cameras 186 2.4.3 Detector Temperature Stabilization and Detector Cooling 188 2.4.4 Optics and Filters 191 2.


4.4.1 Spectral Response 191 2.4.4.2 Chromatic Aberrations 191 2.4.4.


3 Field of View 192 2.4.4.4 Extender Rings 195 2.4.4.5 Narcissus Effect 196 2.4.


4.6 Spectral Filters 199 2.4.5 Calibration 200 2.4.6 Camera Operation 204 2.4.6.


1 Switch-On Behavior of Cameras 205 2.4.6.2 Thermal Shock Behavior 206 2.4.7 Camera Software - Software Tools 208 2.5 Camera Performance Characterization 209 2.5.


1 Temperature Accuracy 209 2.5.2 Temperature Resolution - Noise Equivalent Temperature Difference (NETD) 210 2.5.3 Spatial Resolution - IFOV and Slit Response Function 213 2.5.4 Image Quality: MTF, MRTD, and MDTD 216 2.5.


5 Time Resolution - Frame Rate and Integration Time 221 References 226 3 AdvancedMethods in IR Imaging 229 3.1 Introduction 229 3.2 Spectrally Resolved Infrared Thermal Imaging 229 3.2.1 Using Filters 230 3.2.1.1 Glass Filters 231 3.


2.1.2 Plastic Filters 233 3.2.1.3 Influence of Filters on Object Signal and NETD 234 3.2.2 Two-Color or Ratio Thermography 236 3.


2.2.1 Neglecting Background Reflections 237 3.2.2.2 Approximations of Planck''s Radiation Law 240 3.2.2.


3 Tobj Error for True Gray Bodies withinWien Approximation 242 3.2.2.4 Additional Tobj Errors Owing to Nongray Objects 246 3.2.2.5 Ratio Versus Single-Band-Radiation Thermometry 247 3.2.


2.6 Exemplary Application of Two-Color Thermography 248 3.2.2.7 Extension of Ratio Method and Applications 254 3.2.3 Multi- and Hyperspectral Infrared Imaging 256 3.2.


3.1 Principal Idea 256 3.2.3.2 Basics of FTIR Spectrometry 258 3.2.3.3 Advantages of FTIR Spectrometers 262 3.


2.3.4 Example of a Hyperspectral Imaging Instrument 263 3.3 Superframing 265 3.3.1 Method 266 3.3.2 Example of High-Speed Imaging and Selected Integration Times 268 3.


3.3 Cameras with Fixed Integration Time 270 3.4 Polarization in Infrared Thermal Imaging 271 3.4.1 Polarization and Thermal Reflections 272 3.4.1.1 Transition from Directed to Diffuse Reflections from Surfaces 272 3.


4.1.2 Reflectivities for SelectedMaterials in the Thermal Infrared Range 276 3.4.1.3 Measuring Reflectivity Spectra: Laboratory Experiments 278 3.4.1.


4 Identification and Suppression of Thermal Reflections: Practical Examples 281 3.4.2 Polarization-Sensitive Thermal Imaging 284 3.5 Processing of IR Images 285 3.5.1 Basic Methods of Image Processing 287 3.5.1.


1 Image Fusion 287 3.5.1.2 Image Building 289 3.5.1.3 Image Subtraction 290 3.5.


1.4 Consecutive Image Subtraction: Time Derivatives 293 3.5.1.5 Consecutive Image Subtraction: High-Sensitivity Mode 296 3.5.1.6 Image Derivative in Spatial Domain 296 3.


5.1.7 Infrared Image Contrast and Digital Detail Enhancement 300 3.5.2 Advanced Methods of Image Processing 309 3.5.2.1 Preprocessing 311 3.


5.2.2 Geometrical Transformations 313 3.5.2.3 Segmentation 314 3.5.2.


4 Feature Extraction and Reduction 316 3.5.2.5 Pattern Recognition 319 3.5.2.6 Deblurring of Infrared Images 321 3.6 Active Thermal Imaging 327 3.


6.1 Transient Heat Transfer - ThermalWave Description 330 3.6.2 Pulse Thermography 333 3.6.3 Lock-in Thermography 337 3.6.3.


1 Nondestructive Testing of Metals and Composite Structures 340 3.6.3.2 Solar Cell Inspection 343 3.6.4 Pulsed Phase Thermography 345 References 346 4 Some Basic Concepts in Heat Transfer 351 4.1 Introduction 351 4.2 The Basic Heat TransferModes: Conduction, Convection, and Radiation 352 4.


2.1 Conduction 352 4.2.2 Convection 355 4.2.3 Radiation 356 4.2.4 Convection Including Latent Heats 357 4.


3 Selected Examples of Heat Transfer Problems 359 4.3.1 Overview 359 4.3.2 Conduction within Solids: The Biot Number 361 4.3.3 Steady-State Heat Transfer through One-DimensionalWalls and U-Value 364 4.3.


4 Heat Transfer ThroughWindows 369 4.3.5 Steady-State Heat Transfer in Two- and Three-Dimensional Problems: Thermal Bridges 370 4.3.6 Dew Point Temperatures 372 4.4 Transient Effects: Heating and Cooling of Objects 373 4.4.1 Heat Capacity and Thermal Diffusivity 374 4.


4.2 Short Survey of Quantitative Treatments of Time-Dependent Problems 375 4.4.3 Demonstration of Transient Heat Diffusion 377 4.4.4 Typical Time Constants for Transient Thermal Phenomena 377 4.4.4.


1 Cooling Cube Experiment 379 4.4.4.2 Theoretical Modeling of Cooling of Solid Cubes 379 4.4.4.3 Ti.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...