INTRODUCTION What Are Linear Mixed Models (LMMs)? A Brief History of Linear Mixed Models LINEAR MIXED MODELS: AN OVERVIEW Introduction Specification of LMMs The Marginal Linear Model Estimation in LMMs Computational Issues Tools for Model Selection Model-Building Strategies Checking Model Assumptions (Diagnostics) Other Aspects of LMMs Power Analysis for Linear Mixed Models Chapter Summary TWO-LEVEL MODELS FOR CLUSTERED DATA: THE RAT PUP EXAMPLE Introduction The Rat Pup Study Overview of the Rat Pup Data Analysis Analysis Steps in the Software Procedures Results of Hypothesis Tests Comparing Results across the Software Procedures Interpreting Parameter Estimates in the Final Model Estimating the Intraclass Correlation Coefficients (ICCs) Calculating Predicted Values Diagnostics for the Final Model Software Notes and Recommendations THREE-LEVEL MODELS FOR CLUSTERED DATA; THE CLASSROOM EXAMPLE Introduction The Classroom Study Overview of the Classroom Data Analysis Analysis Steps in the Software Procedures Results of Hypothesis Tests Comparing Results across the Software Procedures Interpreting Parameter Estimates in the Final Model Estimating the Intraclass Correlation Coefficients (ICCs) Calculating Predicted Values Diagnostics for the Final Model Software Notes Recommendations MODELS FOR REPEATED-MEASURES DATA: THE RAT BRAIN EXAMPLE Introduction The Rat Brain Study Overview of the Rat Brain Data Analysis Analysis Steps in the Software Procedures Results of Hypothesis Tests Comparing Results across the Software Procedures Interpreting Parameter Estimates in the Final Model The Implied Marginal Variance-Covariance Matrix for the Final Model Diagnostics for the Final Model Software Notes Other Analytic Approaches Recommendations RANDOM COEFFICIENT MODELS FOR LONGITUDINAL DATA: THE AUTISM EXAMPLE Introduction The Autism Study Overview of the Autism Data Analysis Analysis Steps in the Software Procedures Results of Hypothesis Tests Comparing Results across the Software Procedures Interpreting Parameter Estimates in the Final Model Calculating Predicted Values Diagnostics for the Final Model Software Note: Computational Problems with the D Matrix An Alternative Approach: Fitting the Marginal Model with an Unstructured Covariance Matrix MODELS FOR CLUSTERED LONGITUDINAL DATA: THE DENTAL VENEER EXAMPLE Introduction The Dental Veneer Study Overview of the Dental Veneer Data Analysis Analysis Steps in the Software Procedures Results of Hypothesis Tests Comparing Results across the Software Procedures Interpreting Parameter Estimates in the Final Model The Implied Marginal Variance-Covariance Matrix for the Final Model Diagnostics for the Final Model Software Notes and Recommendations Other Analytic Approaches MODELS FOR DATA WITH CROSSED RANDOM FACTORS: THE SAT SCORE EXAMPLE Introduction The SAT Score Study Overview of the SAT Score Data Analysis Analysis Steps in the Software Procedures Results of Hypothesis Tests Comparing Results across the Software Procedures Interpreting Parameter Estimates in the Final Model The Implied Marginal Variance-Covariance Matrix for the Final Model Recommended Diagnostics for the Final Model Software Notes and Additional Recommendations APPENDIX A: STATISTICAL SOFTWARE RESOURCES APPENDIX B: CALCULATION OF THE MARGINAL VARIANCE-COVARIANCE MATRIX APPENDIX C: ACRONYMS/ABBREVIATIONS BIBLIOGRAPHY INDEX al Model Estimating the Intraclass Correlation Coefficients (ICCs) Calculating Predicted Values Diagnostics for the Final Model Software Notes and Recommendations THREE-LEVEL MODELS FOR CLUSTERED DATA; THE CLASSROOM EXAMPLE Introduction The Classroom Study Overview of the Classroom Data Analysis Analysis Steps in the Software Procedures Results of Hypothesis Tests Comparing Results across the Software Procedures Interpreting Parameter Estimates in the Final Model Estimating the Intraclass Correlation Coefficients (ICCs) Calculating Predicted Values Diagnostics for the Final Model Software Notes Recommendations MODELS FOR REPEATED-MEASURES DATA: THE RAT BRAIN EXAMPLE Introduction The Rat Brain Study Overview of the Rat Brain Data Analysis Analysis Steps in the Software Procedures Results of Hypothesis Tests Comparing Results across the Software Procedures Interpreting Parameter Estimates in the Final Model The Implied Marginal Variance-Covariance Matrix for the Final Model Diagnostics for the Final Model Software Notes Other Analytic Approaches Recommendations RANDOM COEFFICIENT MODELS FOR LONGITUDINAL DATA: THE AUTISM EXAMPLE Introduction The Autism Study Overview of the Autism Data Analysis Analysis Steps in the Software Procedures Results of Hypothesis Tests Comparing Results across the Software Procedures Interpreting Parameter Estimates in the Final Model Calculating Predicted Values Diagnostics for the Final Model Software Note: Computational Problems with the D Matrix An Alternative Approach: Fitting the Marginal Model with an Unstructured Covariance Matrix MODELS FOR CLUSTERED LONGITUDINAL DATA: THE DENTAL VENEER EXAMPLE Introduction The Dental Veneer Study Overview of the Dental Veneer Data Analysis Analysis Steps in the Software Procedures Results of Hypothesis Tests Comparing Results across the Software Procedures Interpreting Parameter Estimates in the Final Model The Implied Marginal Variance-Covariance Matrix for the Final Model Diagnostics for the Final Model Software Notes and Recommendations Other Analytic Approaches MODELS FOR DATA WITH CROSSED RANDOM FACTORS: THE SAT SCORE EXAMPLE Introduction The SAT Score Study Overview of the SAT Score Data Analysis Analysis Steps in the Software Procedures Results of Hypothesis Tests Comparing Results across the Software Procedures Interpreting Parameter Estimates in the Final Model The Implied Marginal Variance-Covariance Matrix for the Final Model Recommended Diagnostics for the Final Model Software Notes and Additional Recommendations APPENDIX A: STATISTICAL SOFTWARE RESOURCES APPENDIX B: CALCULATION OF THE MARGINAL VARIANCE-COVARIANCE MATRIX APPENDIX C: ACRONYMS/ABBREVIATIONS BIBLIOGRAPHY INDEX n Data Analysis Analysis Steps in the Software Procedures Results of Hypothesis Tests Comparing Results across the Software Procedures Interpreting Parameter Estimates in the Final Model The Implied Marginal Variance-Covariance Matrix for the Final Model Diagnostics for the Final Model Software Notes Other Analytic Approaches Recommendations RANDOM COEFFICIENT MODELS FOR LONGITUDINAL DATA: THE AUTISM EXAMPLE Introduction The Autism Study Overview of the Autism Data Analysis Analysis Steps in the Software Procedures Results of Hypothesis Tests Comparing Results across the Software Procedures Interpreting Parameter Estimates in the Final Model Calculating Predicted Values Diagnostics for the Final Model Software Note: Computational Problems with the D Matrix An Alternative Approach: Fitting the Marginal Model with an Unstructured Covariance Matrix MODELS FOR CLUSTERED LONGITUDINAL DATA: THE DENTAL VENEER EXAMPLE Introduction The Dental Veneer Study Overview of the Dental Veneer Data Analysis Analysis Steps in the Software Procedures Results of Hypothesis Tests Comparing Results across the Software Procedures Interpreting Parameter Estimates in the Final Model The Implied Marginal Variance-Covariance Matrix for the Final Model Diagnostics for the Final Model Software Notes and Recommendations Other Analytic Approaches MODELS FOR DATA WITH CROSSED RANDOM FACTORS: THE SAT SCORE EXAMPLE Introduction The SAT Score Study Overview of the SAT Score Data Analysis Analysis Steps in the Software Procedures Results of Hypothesis Tests Comparing Results across the Software Procedures Interpreting Parameter Estimates in the Final Model The Implied Marginal Variance-Covariance Matrix for the Final Model Recommended Diagnostics for the Final Model Software Notes and Additional Recommendations APPENDIX A: STATISTICAL SOFTWARE RESOURCES APPENDIX B: CALCULATION OF THE MARGINAL VARIANCE-COVARIANCE MATRIX APPENDIX C: ACRONYMS/ABBREVIATIONS BIBLIOGRAPHY INDEX gnostics for the Final Model Software Note: Computational Problems with the D Matrix An Alternative Approach: Fitting the Marginal Model with an Unstructured Covariance Matrix MODELS FOR CLUSTERED LONGITUDINAL DATA: THE DENTAL VENEER EXAMPLE Introduction The Dental Veneer Study Overview of the Dental Veneer Data Analysis Analysis Steps in the Software Procedures Results of Hypothesis Tests Compa.
Linear Mixed Models : A Practical Guide Using Statistical Software, Second Edition