Section 1 Highway Bridges1.1 USE AND FUNCTIONALITY1.1.1 Terminology and Nomenclature1. Superstructure2. Substructure3. Appurtenances and Site-Related Features4. Miscellaneous Terms1.
1.2 Structure Types and Applications1. Slab-on-Girder2. One-Way Slab3. Steel and Concrete Box Girder4. Cable-Stayed5. Suspension6. Steel and Concrete Arch7.
Truss1.2 ORIGINS OF THE MODERN HIGHWAY BRIDGE1.3 BRIDGE DESIGNERS AND THEIR PROJECTS1.4 THE BRIDGE ENGINEERING LEXICONREFERENCESSection 2 Project Inception2.1 PROJECT FUNDING2.1.1 User Fees2.1.
2 Nonuser Fees2.1.3 Special Benefit Fees2.1.4 Private Financing2.1.5 Debt Financing2.1.
6 Conclusions2.2 TYPES OF DESIGN STANDARDS2.2.1 General Specifications2.2.2 Material-Related Design Codes1. Steel2. Concrete3.
Timber2.2.3 Use of Design Standards2.3 SITE INSPECTION2.3.1 The Qualifications of Inspectors2.3.2 The Design Inspection2.
3.3 Recording the Inspection2.3.4 Rating Substructure Elements1. Joints2. Bearings, Bridge Seats, and Pedestals3. Concrete Elements4. Steel Elements5.
Timber Elements6. Embankment2.3.5 Rating Superstructure Elements1. Deck and Wearing Surface2. Primary and Secondary Members2.3.6 Rating Appurtenance and Site-Related Elements1.
Railing2. Drainage Systems3. Utilities4. Lighting and Signing2.3.7 Inspecting for Scour1. The Channel2. The Substructure2.
3.8 Conclusions2.4 SITE SURVEY2.4.1 Topography2.4.2 Planimetry2.4.
3 Structure Features2.5 PHYSICAL TESTING2.5.1 Coring2.5.2 Delamination Testing2.5.3 Testing for Cover2.
5.4 Measuring Steel Thickness2.5.5 Detecting Fatigue Cracks2.6 THE INSPECTION TEAM2.7 AS-BUILT PLANS AND OTHER RECORD DATA2.7.1 Supplementing As-Built Plans1.
Guard Railing2. Drainage Facilities3. Traffic Barriers4. Miscellaneous Elements2.7.2 Other Sources2.8 CONCLUSIONSREFERENCESSection 3 The Superstructure3.1 SUPERSTRUCTURE TYPES3.
1.1 Steel Superstructures1. Rolled Beam2. Rolled Beam with Cover Plate3. Plate Girder4. Box Girder5. Steel Rigid Strut Frame6. Large Structures3.
1.2 Concrete Superstructures1. Prestressed Concrete Girder2. Concrete Box Girder3. Concrete Slab4. Adjacent Prestressed Slab5. Concrete Rigid Frame6. Concrete Strut Frame7.
Concrete Arch3.1.3 Timber Superstructures1. Glulam Timber2. Stress-Laminated Timber Deck3. Trestle4. Truss3.1.
4 Secondary Members1. Diaphragms2. Lateral Bracing3. Portal and Sway Bracing3.2 DECK TYPES3.2.1 Noncomposite and Composite Decks3.2.
2 Cast-in-Place Concrete Slab3.2.3 Full-Depth Precast Concrete Panels3.2.4 Partial-Depth Precast Concrete Panels3.2.5 Steel Orthotropic Plate3.2.
6 Steel Grid3.2.7 Timber3.2.8 Corrugated Metal3.2.9 Fiber Reinforced Polymer (FRP)3.3 WEARING SURFACE TYPES3.
3.1 Asphalt Concrete3.3.2 Polymer Modified Concrete3.3.3 Micro-Silica Concrete3.3.4 High-Performance Concrete3.
3.5 Integrated Wearing Surface3.4 DECK JOINT TYPES3.4.1 Open and Sealed Joints3.4.2 Poured Joints3.4.
3 Compression Seal Joints3.4.4 Strip Seal Joints3.4.5 Modular Joints3.4.6 Finger Plate Joints3.4.
7 Sliding Plate Joints3.4.8 Conclusions3.5 DESIGN LOADS3.5.1 Background and History3.5.2 Permanent Loads1.
Dead Load2. Superimposed Dead Load3. Pressures4. Superimposed Deformations3.5.3 Transient Loads1. Vehicular Live Load2. Pedestrian Load3.
Earthquake Loading4. Wind Loading5. Channel Forces6. Braking Force7. Centrifugal Forces8. Dynamic Load Allowance9. Construction Loads3.5.
4 Deformation and Response Loads1. Shrinkage2. Creep3. Settlement4. Uplift5. Thermal Movement3.5.5 Group Loading Combinations1.
AASHTO Standard Specifications2. AASHTO LRFD Specifications3.6 DESIGN METHODS3.6.1 Working Stress Design3.6.2 Limit States Design3.6.
3 Background and History3.6.4 The Many Names of Working Stress and Limit States1. Allowable Stress Design2. Service Load Design3. Load Factor Design.4. Strength Design5.
Ultimate Strength6. Load and Resistance Factor Design3.7 INTERNAL FORCES3.7.1 Bending Moment3.7.2 Shear Force3.7.
3 Torsional Moment3.7.4 Axial Force3.8 LOAD DISTRIBUTION3.8.1 How Loads Are Distributed3.8.2 Different Types of Load Distribution1.
Interior Longitudinal Members2. Exterior Longitudinal Members3. Transverse Members4. Adjacent Concrete Slabs (or Box Beams)5. Other Multibeam Decks6. Slab-Type Bridges3.8.3 Conclusions3.
9 CONCRETE DECK SLABS3.9.1 Equivalent Slab Strip3.9.2 Calculation of Bending Moment3.9.3 Distribution Reinforcement3.9.
4 Minimum Slab Thickness3.9.5 Empirical Design Method3.9.6 Slab Reinforcement Details3.9.7 Construction, Rehabilitation, and Maintenance1. Increased Slab Thickness and Cover2.
Coated Reinforcement3. Waterproofing Membrane4. Drainage5. Snow and Ice Removal6. Patching7. Sealing8. Cathodic Protection9. Chloride Extraction10.
Realkalization3.9.8 Conclusions3.10 COMPOSITE STEEL MEMBERS3.10.1 Composite Action3.10.2 Shored and Unshored Construction3.
10.3 Effective Flange Width3.10.4 The Transformed Section3.10.5 Effects of Creep3.10.6 Choosing a Girder Section1.
Compute Design Moments and Shear Forces2. Total Factored Moment and Shear Forces3. Choosing a Section4. Composite Section in Positive Flexure5. Composite Section in Negative Flexure and Noncomposite Sections6. Shear Resistance of I-Sections7. Web Bending-Buckling8. Conclusions3.
10.7 Shear Connector Design1. Fatigue2. Additional Geometric Constraints3. Effect of Stay-in-Place Forms4. Strength Limit State3.10.8 Bridge Fatigue1.
Linear-Elastic Fracture Mechanics2. Stress-Life Method3. AASHTO Method4. Fatigue-Prone Details3.10.9 Deflections3.10.10 Camber3.
11 PLATE GIRDER DESIGN3.11.1 Hybrid Girders3.11.2 Elements of a Plate Girder1. Flange Plate Thickness2. Flange Plate Economy3. Web Thickness4.
Web Plate Economy5. Transverse Intermediate Stiffeners6. Transverse Intermediate Stiffener Economy7. Bearing Stiffeners8. Longitudinal Stiffeners9. Longitudinal Stiffener Economy10. Miscellaneous Economy Issues3.11.
3 Lateral Bracing for Plate Girders1. Where Bracing Is Located2. Bracing as a Function of Span Length3. Placement and Types of Lateral Bracing4. Eliminating Lateral Bracing5. Economy of Lateral Bracing3.11.4 Cross-Frames for Plate Girders3.
11.5 Plate Girders vs. Rolled Stringers3.12 CONTINUOUS BEAMS3.12.1 Advantages of Continuous Beams3.12.2 Continuous Beams3.
12.3 Live Load on Continuous Beam Structures1. Computing Moment Using Influence Lines2. Special Load Points3. Shear Force and Reactions3.12.4 Composite Section in Negative Bending3.12.
5 Girder Splices1. Required Strength2. Welded Splices3. Bolted Splices4. Bolted Web Splices5. Bolted Flange Splices3.12.6 Pin and Hanger Assemblies3.
13 STEEL PROTECTION AND REHABILITATION3.13.1 Protective Coating Systems1. Background and History2. The Nature of Steel Corrosion3. Inhibitive Primers4. Sacrificial Primers5. Barrier Coatings6.
Coating Applications7. Surface Preparation8. Overcoating9. Micaceous Iron Oxide (MIO) Coatings10. Conclusions3.13.2 Containment and Disposal of Paint Waste1. Background and History2.
Containment Devices3. Recycling Abrasives4. Disposal Methods5. Conclusions3.13.3 Weathering Steel1. Background and History2. Material Properties of Weathering Steel3.
Environmental Considerations4. Maintenance of Weathering Steel5. Inspection of Weathering Steel6. Rehabilitation of Weathering Steel7. Conclusions3.13.4 Galvanizing1. Overview2.
Benefits and Drawbacks3.13.5 Rehabilitation of Steel Structures1. Corrosion and Section Loss2. Cracks3. Strengthening3.13.6 Conclusions3.
14 PRESTRESSED CONCRETE3.14.1 Overview of Prestressed Concrete1. Pretensioned Beams2. Posttensioned Beams3. Application of Pre- and Post-tensioned Concrete4. Prestressing Steel5. Concrete for Prestressing3.
14.2 Composite Beams1. Advantages2. Effective Flange Width3. Horizontal Shear3.14.3 Required Prestress Force3.14.
4 Loss of Prestress1. Elastic Shortening2. Friction3. Anchorage Set4. Time-Dependent Losses5. Total Loss3.14.5 Allowable Stresses3.
14.6 Flexural Strength3.14.7 Shear Resistance3.15 PRESTRESSED CONCRETE MAINTENANCE3.15.1 Overview3.15.
2 Deterioration of Prestressed Concrete1. Cracking2. Other Forms of Concrete Problems3. Deterioration of Prestressing Steel3.15.3 Inspection of Prestressed Concrete3.15.4 Rehabilitation of Prestressed Concrete1.
Patching2. Steel Jacketing3. Strand Splice4. Crack Injection5. Sealers and Coatings6. Strengthening7. Conclusions3.16 LOAD RATING3.
16.1 Inventory and Operating Ratings3.16.2 Field Measurements and Inspection3.16.3 Loading the Structure3.16.4 Allowable Stress Method1.
Steel and Wrought Iron2. Conventionally Reinforced and Prestressed Concrete3. Masonry4. Timber3.16.5 Load Factor Method3.16.6 Load and Resistance Factor Method1.
Overview2. Rating Procedures3. Fatigue Life Evaluation4. The Concept of Safe Evaluation5. ConclusionsREFERENCESSection 4 The Substructure4.1 ABUTMENTS4.1.1 Types of Abutments1.
Gravity Abutment2. Cantilever Abutment3. Full-Height Abutment4. Stub Abutment5. Semistub Abutment6. U Abutment7. Counterfort Abutment8. Spill-through Abutment9.
Pile Bent Abutment10. MSE Systems4.1.2 Coulomb Earth Pressure Theory4.1.3 Abutment Foundation Design1. Loading2. Spread Footings3.
Foundations on Piles4. Foundations on Drilled Shafts4.1.4 Abutment Stem4.1.5 Wingwalls4.1.6 Other Related Foundation Topics4.
1.7 Mononobe-Okabe Analysis1. Background2. Seismic Acceleration Coefficient3. Basic Assumption4. Active Earth Pressure5. Applying Active Earth Pressure6. Horizontal Inertial Force7.
Superstructure Loads4.1.8 Rehabilitation and Maintenance1. Cracking2. Surface Deterioration3. Stability Problems4. Bridge Seat Deterioration5. Sheet Piling Abutments6.
Stone Masonry Abutments7. MSE Systems8. Footings9. Piles4.2 PIERS4.2.1 Types of Piers1. Hammerhead2.
Column Bent3. Pile Bent4. Solid Wall5. Integral6. Single Column4.2.2 Behavior and Loading of Piers4.2.
3 Design Criteria4.2.4 Design of Compression Members1. Axial Loaded Columns2. Moment Magnification Method3. Interaction Diagrams4. Biaxial Bending5. Limits of Reinforcement4.
2.5 Rehabilitation and Maintenance4.2.6 Scour1. Overview2. Rehabilitation and Maintenance3. Replacement of Material4. Changing the Structure5.
Re.