Browse Subject Headings
Minimal Surfaces
Minimal Surfaces
Click to enlarge
Author(s): Dierkes, Ulrich
Hildebrandt, Stefan
Sauvigny, Friedrich
ISBN No.: 9783642116971
Pages: xvi, 692
Year: 201010
Format: Trade Cloth (Hard Cover)
Price: $ 205.61
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a non-constant harmonic mapping X: \Omega\to\R DEGREES3 which is conformally parametrized on \Omega\subset\R DEGREES2 and may have branch points.


Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Bjorlings initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto. The second part of this volume begins with a survey of Plateaus problem and of some of its modifications. One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components. Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsches uniqueness theorem and Tomis finiteness result. In addition, a theory of unstable solutions of Plateaus problems is developed which is based on Courants mountain pass lemma.


Furthermore, Dirichlets problem for nonparametric H-surfaces is solved, using the solution of Plateaus problem for H-surfaces and the pertinent estimates.".


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...
Browse Subject Headings