List of Figures xvii List of Tables xxvii Preface xxxi Acknowledgments xxxv About the Companion Website xxxvii 1 Ship Hydrodynamics 1 1.1 Calm Water Hydrodynamics 1 1.2 Ship Hydrodynamics and Ship Design 6 1.3 Available Tools 7 2 Ship Resistance 10 2.1 Total Resistance 10 2.2 Phenomenological Subdivision 11 2.3 Practical Subdivision 12 2.3.
1 Froude''s hypothesis 14 2.3.2 ITTC''s method 15 2.4 Physical Subdivision 17 2.4.1 Body forces 18 2.4.2 Surface forces 18 2.
5 Major Resistance Components 20 3 Fluid and Flow Properties 26 3.1 A Word on Notation 26 3.2 Fluid Properties 29 3.2.1 Properties of water 29 3.2.2 Properties of air 31 3.2.
3 Acceleration of free fall 32 3.3 Modeling and Visualizing Flow 32 3.4 Pressure 35 4 Fluid Mechanics and Calculus 41 4.1 Substantial Derivative 41 4.2 Nabla Operator and Its Applications 44 4.2.1 Gradient 44 4.2.
2 Divergence 45 4.2.3 Rotation 47 4.2.4 Laplace operator 48 5 Continuity Equation 50 5.1 Mathematical Models of Flow 50 5.2 Infinitesimal Fluid Element Fixed in Space 51 5.3 Finite Control Volume Fixed in Space 54 5.
4 Infinitesimal Element Moving With the Fluid 55 5.5 Finite Control Volume Moving With the Fluid 55 5.6 Summary 56 6 Navier-Stokes Equations 59 6.1 Momentum 59 6.2 Conservation of Momentum 60 6.2.1 Time rate of change of momentum 60 6.2.
2 Momentum flux over boundary 60 6.2.3 External forces 63 6.2.4 Conservation of momentum equations 65 6.3 Stokes'' Hypothesis 66 6.4 Navier-Stokes Equations for a Newtonian Fluid 67 7 Special Cases of the Navier-Stokes Equations 71 7.1 Incompressible Fluid of Constant Temperature 71 7.
2 Dimensionless Navier-Stokes Equations 75 8 Reynolds Averaged Navier-Stokes Equations (RANSE) 82 8.1 Mean and Turbulent Velocity 82 8.2 Time Averaged Continuity Equation 84 8.3 Time Averaged Navier-Stokes Equations 87 8.4 Reynolds Stresses and Turbulence Modeling 89 9 Application of the Conservation Principles 94 9.1 Body in a Wind Tunnel 94 9.2 Submerged Vessel in an Unbounded Fluid 99 9.2.
1 Conservation of mass 100 9.2.2 Conservation of momentum 102 10 Boundary Layer Theory 106 10.1 Boundary Layer 106 10.1.1 Boundary layer thickness 107 10.1.2 Laminar and turbulent flow 108 10.
1.3 Flow separation 110 10.2 Simplifying Assumptions 111 10.3 Boundary Layer Equations 115 11 Wall Shear Stress in the Boundary L Wall Shear Stress in the Boundary Layer 118 11.1 Control Volume Selection 118 11.2 Conservation of Mass in the Boundary Layer 119 11.3 Conservation of Momentum in the Boundary Layer 121 11.3.
1 Momentum flux over boundary of control volume 122 11.3.2 Surface forces acting on control volume 124 11.3.3 Displacement thickness 130 11.3.4 Momentum thickness 131 11.4 Wall Shear Stress 12 Boundary Layer of a Flat Plate 132 12.
1 Boundary Layer Equations for a Flat Plate 132 12.2 Dimensionless Velocity Profiles 134 12.3 Boundary Layer Thickness 136 12.4 Wall Shear Stress 140 12.5 Displacement Thickness 141 12.6 Momentum Thickness 142 12.7 Friction Force and Coefficients 143 13 Frictional Resistance 146 13.1 Turbulent Boundary Layers 146 13.
2 Shear Stress in Turbulent Flow 152 13.3 Friction Coefficients for Turbulent Flow 153 13.4 Model-Ship Correlation Lines 155 13.5 Effect of Surface Roughness 157 13.6 Effect of Form 160 13.7 Estimating Frictional Resistance 161 14 Inviscid Flow 165 14.1 Euler Equations for Incompressible Flow 165 14.2 Bernoulli Equation 166 14.
3 Rotation, Vorticity, and Circulation 171 15 Potential Flow 177 15.1 Velocity Potential 177 15.2 Circulation and Velocity Potential 182 15.3 Laplace Equation 184 15.4 Bernoulli Equation for Potential Flow 187 16 Basic Solutions of the Laplace Equation 191 16.1 Uniform Parallel Flow 191 16.2 Sources and Sinks 192 16.3 Vortex 196 16.
4 Combinations of Singularities 198 16.4.1 Rankine oval 198 16.4.2 Dipole 202 16.5 Singularity Distributions 204 17 Ideal Flow Around A Long Cylinder 207 17.1 Boundary Value Problem 207 17.1.
1 Moving cylinder in fluid at rest 208 17.1.2 Cylinder at rest in parallel flow 210 17.2 Solution and Velocity Potential 211 17.3 Velocity and Pressure Field 214 17.3.1 Velocity field 215 17.3.
2 Pressure field 216 17.4 D''Alembert''s Paradox 218 17.5 Added Mass 219 18 Viscous Pressure Resistance 223 18.1 Displacement Effect of Boundary Layer 223 18.2 Flow Separation 226 19 Waves and Ship Wave Patterns 230 19.1 Wave Length, Period, and Height 230 19.2 Fundamental Observations 233 19.3 Kelvin Wave Pattern 235 20 Wave Theory 239 20.
1 Overview 239 20.2 Mathematical Model for Long-crested Waves 240 20.2.1 Ocean bottom boundary condition 241 20.2.2 Free surface boundary conditions 242 20.2.3 Far field condition 246 20.
2.4 Nonlinear boundary value problem 247 20.3 Linearized Boundary Value Problem 248 21 Linearization of Free Surface Boundary Conditions 250 21.1 Perturbation Approach 250 21.2 Kinematic Free Surface Condition 252 21.3 Dynamic Free Surface Condition 254 21.4 Linearized Free Surface Conditions for Waves 256 22 Linear Wave Theory 259 22.1 Solution of Linear Boundary Value Problem 259 22.
2 Far Field Condition Revisited 265 22.3 Dispersion Relation 265 22.4 Deep Water Approximation 267 23 Wave Properties 271 23.1 Linear Wave Theory Results 271 23.2 Wave Number 272 23.3 Water Particle Velocity and Acceleration 275 23.4 Dynamic Pressure 279 23.5 Water Particle Motions 280 24 Wave Energy and Wave Propagation 284 24.
1 Wave Propagation 284 24.2 Wave Energy 287 24.2.1 Kinetic wave energy 287 24.2.2 Potential wave energy 290 24.2.3 Total wave energy density 292 24.
3 Energy Transport and Group Velocity 293 25 Ship Wave Resistance 299 25.1 Physics of Wave Resistance 299 25.2 Wave Superposition 301 25.3 Michell''s Integral 310 25.4 Panel Methods 312 26 Ship Model Testing 316 26.1 Testing Facilities 316 26.1.1 Towing Lank 317 26.
1.2 Cavitation tunnel 320 26.2 Ship and Propeller Models 321 26.2.1 Turbulence generation 322 26.2.2 Loading condition 323 26.2.
3 Propeller models 324 26.3 Model Basins 324 27 Dimensional Analysis 327 27.1 Purpose of Dimensional Analysis 327 27.2 Buckingham -Theorem 328 27.3 Dimensional Analysis of Ship Resistance 328 28 Laws of Similitude 332 28.1 Similarities 332 28.1.1 Geometric similarity 333 28.
1.2 Kinematic similarity 333 28.1.3 Dynamic similarity 334 28.1.4 Summary 340 28.2 Partial Dynamic Similarity 340 28.2.
1 Hypothetical case: full dynamic similarity 340 28.2.2 Real world: partial dynamic similarity 342 28.2.3 Froude''s hypothesis revisited 343 29 Resistance Test 345 29.1 Test Procedure 345 29.2 Reduction of Resistance Test Data 348 29.3 Form Factor k 351 29.
4 Wave Resistance Coefficient Cw 354 29.5 Skin Friction Correction Force FD 355 30 Full Scale Resistance Prediction 357 30.1 Model Test Results 357 30.2 Corrections and Additional Resistance Components 358 30.3 Total Resistance and Effective Power 359 30.4 Example Resistance Prediction 360 31 Resistance Estimates - Guldhammer and Harvald''s Method 367 31.1 Historical Development 367 31.2 Guldhammer and Harvald''s Method 369 31.
2.1 Applicability 369 31.2.2 Required input 369 31.2.3 Resistance estimate 372 31.3 Extended Resistance Estimate Example 378 31.3.
1 Completion of input parameters 379 31.3.2 Range of speeds 380 31.3.3 Residuary resistance coefficient 380 31.3.4 Frictional resistance coefficient 383 31.3.
5 Additional resistance coefficients 383 31.3.6 Total resistance coefficient 384 31.3.7 Total resistance and effective power 384 32 Introduction to Ship Propulsion 389 32.1 Propulsion Task 389 32.2 Propulsion Systems 391 32.2.
1 Marine propeller 391 32.2.2 Water jet propulsion 392 32.2.3 Voith Schneider propeller (VSP) 393 32.3 Efficiencies in Ship Propulsion 394 33 Momentum Theory of the Propeller 398 33.1 Thrust, Axial Momentum, and Mass Flow 398 33.2 Ideal Efficiency and ^rust Loading Coefficient 403 34 Hull-Propeller Interaction 408 34.
1 Wake- Fraction 408 34.2 ^rust Deduction Fraction 414 34.3 Relative Rotative Efficiency 417 35 Propeller Geometry 420 35.1 Propeller Parts 420 35.2 Principal Propeller Characteristics 422 35.3 Other Geometric Propeller Characteristics 431 36 Lifting Foils 435 36.1 Foil Geometry and Flow Patterns 435 36.2 Lift.