Preface A Note on Notation Chapter 1 - Introduction 1.1. What is MPD? 1.2. MPD Variants, Terminology & Classification 1.3. Brief History and Overview of MPD Variants 1.3.
1. General Introduction 1.3.2. Continuous Circulation 1.3.3. Surface Back Pressure MPD 1.
3.4. Riserless and Dual-Gradient Drilling 1.3.5. Mud Cap Drilling 1.3.6.
Managed Pressure Cementing and Completions 1.4. Main Benefits & Advantages of MPD 1.5. The Stakeholder Case for Action - Why Adopt MPD? 2. Fundamentals & Essential Background 2.1. Introduction 2.
2. Hydraulics 2.2.1. Hydraulics Introduction 2.2.2. Hydrostatics 2.
2.2.1. Definitions 2.2.2.2. Density - Ideal and Non-Ideal Mixing 2.
2.2.3. Incompressible Fluids 2.2.2.4. Compressible Fluids 2.
2.2.5. Effect of Hole Cleaning and Barite Sag on Density 2.2.2.6. Multiple Fluid Gradients & Unbalanced U-Tube Effects 2.
2.3. Hydrodynamics 2.2.3.1. Pump Pressure, Frictional Pressure Loss & ECD 2.2.
3.2. Hydraulics Models 2.2.3.3. Hydraulic Modeling: Calculating Frictional Pressure Losses during Circulation 2.2.
3.4. Transient Effects: Surge & Swab 2.2.3.5. Transient Effects: Mud Gelation and Pump Startups 2.2.
3.6. Hole Cleaning 2.2.3.7. Bit Pressure Drop 2.2.
3.8. Other Hydraulic Pressure Losses 2.2.3.9. Uncertainty in Hydraulic Modeling 2.3.
Rock Mechanics and the Drilling Margin 2.3.1. Drilling Margin Introduction 2.3.2. Pore Pressure 2.3.
2.1. Pore Pressure Introduction 2.3.2.2. Pore Pressure Regimes 2.3.
2.3. Deepwater Pore Pressure - Effect of Water Depth 2.3.2.4. Pore Pressure Indicators 2.3.
2.5. Pore Pressure Evaluation and Prediction 2.3.3. Fracture Gradient 2.3.3.
1 Fracture Gradient Introduction 2.3.3.2. Formation Integrity & Leak-Off Testing, Dynamic MPD Testing 2.3.3.3.
Fracture Gradient Considerations 2.3.3.4. Ballooning / Losses & Gains / Wellbore Breathing 2.3.3.5.
Fracture Gradient Evaluation and Prediction 2.3.4. Effect of Depletion on Pore Pressure and Fracture Gradient 2.3.5. Borehole Stability 2.3.
5.1. Borehole Stability Introduction 2.3.5.2. Stress Tensor & Subsurface Stress Regimes 2.3.
5.3. Subsurface Stress and Rock Failure 2.3.5.4. Near-Wellbore Stresses & Failure Orientation 2.3.
5.5. Mud Weight for Borehole Stability - Avoiding Shear Failure 2.3.5.6. Mud Weight to Prevent Tensile Failure & Induced Fracturing 2.3.
5.7. Wellbore Trajectory and the Drilling Margin 2.3.5.8. Obtaining Borehole Stability Modeling Input Variables 2.3.
5.9. Borehole Stability Modeling Recommendations 2.3.6. Extending the Drilling Margin: Artificial Wellbore Strengthening 2.4. Well Control 2.
4.1. Well Control Introduction 2.4.2. Definitions 2.4.3.
Conventional Kick Detection 2.4.4. Wellbore Breathing Detection & Flowback Fingerprinting 2.4.5. Conventional Well Shut-In, SIDPP & SICP 2.4.
6. MAASP/MASP & MAWP 2.4.7. Kick Intensity (KI) & Kick Tolerance (KT) 2.4.8. Casing Point Selection 2.
4.9. Phase-Behavior of Gases 2.4.10. Gas Solubility 2.4.11.
Conventional Well Control Methods 2.4.11.1. Driller''s Method 2.4.11.2.
Wait & Weight Method 2.4.11.3. Bullheading / Annular Injection 2.4.11.4.
Subsea Well Control 2.4.11.5. Riser Margin and Emergency Riser Disconnects 2.4.12. Mud Gas Separator (MGS) Sizing 2.
4.12.1. Gas Separation Capacity 2.4.12.2. Maximum Allowable Internal Pressure and Gas Flow Rate 2.
5. Speed of Sound 2.6. Temperature Effects 2.6.1. Introduction 2.6.
2. Temperature Regimes, HPHT Classification 2.6.3. Temperature Modeling 2.6.4. Effect of Temperature on Fluid Properties 2.
6.5. Effect of Temperature on Wellbore Stability and Lost Circulation 2.6.6. Effect of Temperature on MAASP and Kick Tolerance 2.6.7.
Effect of Temperature during Non-Circulatory Periods / Connections 2.7. Pipe Light Conditions 2.8. Recommended Reading 3. MPD Benefits and Risks 3.1. Introduction - How MPD Changes the Game and Adds Value 3.
2. Improved Safety 3.2.1. Early Kick Detection (EKD), Early Kick & Loss Detection (EKLD) 3.2.2. Improved Pressure Control and Influx Management 3.
2.3. Dynamic Pore Pressure, Formation Integrity and Leak Off Testing (DPPT, DFIT, DLOT) 3.3. Well Design Optimization 3.4. NPT Avoidance 3.4.
1. Lost Circulation and Wellbore Breathing Prevention and Mitigation 3.4.2. Wellbore Instability and Stuck Pipe Prevention 3.4.3. Differential Sticking and Stuck Pipe Prevention 3.
4.4. Remedial Cementing Avoidance through Managed Pressure Cementing 3.4.5. Optimized Completions 3.5. Invisible Lost Time (ILT) Avoidance & ROP Enhancement 3.
6. Reduced Reservoir Damage and Production Optimization 3.7. Reduced Carbon Footprint of Well Construction Operations 3.9. Risks and Drawbacks of MPD 3.10. Techno-Economical Justification of MPD 4.
MPD Equipment, Software and Operational Implementation 4.1. Introduction 4.2. MPD Equipment 4.2.1. Rotating / Non-Rotating Control Devices (RCD/ACD) 4.
2.1.1. Passive RCD Systems 4.2.1.2. Active RCD Systems 4.
2.1.3. Active Closing Device (ACD) Systems 4.2.1.4. Hybrid RCD Systems 4.
2.1.5. Integrated Pressure Management Device (PMD) 4.2.1.6. RCD Sealing Element Life 4.
2.2. Chokes & Choke Manifolds 4.2.3. Flow Metering 4.2.4.
Non-Return Valves (NRV) 4.2.5. Pressure Relief Valves (PRV), Pressure Relief Chokes (PRC), Pressure Control Valves (PCV) 4.2.6. Junk / Debris Catchers 4.2.
7. Distribution / Buffer Manifolds 4.2.8. Piping, Hoses and Flowlines 4.2.9. Special Downhole Valves 4.
2.9.1. Casing Isolation Valve (CIV) / Downhole Isolation Valve (DIV) 4.2.9.2. Drill String Valve (DSV) / Hydrostatic Control Valve (HCV) 4.
2.10. Back-Pressure Pumps 4.2.11. Mud Gas Separator (MGS) 4.2.12.
Riser Equipment & Configurations, Integrated Riser Joint (IRJ) 4.2.13. Downhole Measurements & Telemetry 4.2.14. Programmable Logic Controllers 4.3.
MPD Operational Implementation 4.3.1. Piping and Instrumentation Diagrams (P&ID), Process Flow Diagrams (PFD) 4.3.2. MPD Certification, Commissioning and Classification 4.3.
3. MPD Fingerprinting 4.3.4. MPD Rig Integration 4.3.4.1.
General Considerations 4.3.4.2. Land Rigs 4.3.4.2.
Offshore Rigs - Jack-Ups & Platform Rigs 4.3.4.3. Offshore Rigs - Deepwater MODUs 4.3.5. Pressure Operations Directive 4.
4. MPD Software and Data-Acquisition 4.5. Recommended Reading 5. Continuous Circulation (CC) 5.1. Introduction 5.2.
Unique Systems, Equipment and Methods 5.2.1. Continuous Circulation System (CCS) 5.2.2. Continuous Circulation Valves (CCV) 5.2.
2.1. Eni Circulation Device (e-cdTM) 5.2.2.2. Non-Stop Driller (NSDTM) 5.2.
2.3. Continuous Flow System (CFSTM) 5.2.2.4. Rotating Continuous Circulation Tool (RCCT) 5.3.
Kick Detection and Well Control 5.4. Tripping 5.5. Case Histories 5.5.1. CCS 5.
5.2. CCV 5.6. Recommended Reading 6. Surface Back Pressure (SBP) 6.1. Introduction 6.
2. Drilling Margin Management 6.2.1. Adding Back-Pressure to Control Annulus / Bottom-Hole Pressures 6.2.2. Anchor Point Selection & Management 6.
2.3. Basis of Design (BOD) 6.2.4. Dynamic Pore Pressure, Formation Integrity and Leak Off Testing (DPPT, DFIT, DLOT) 404 6.2.5.
Tripping, Compensating for Swab & Surge Pressures 6.2.6. Heave Compensation 6.3. Pressure Control & Influx Management 6.3.1.
Introduction 6.3.2. Early Kick & Loss Detection (EKLD) 6.3.3. Influx Management 6.3.
3.1. Primary & Secondary Barrier Operations 6.3.3.2. MPD Operations Matrix 6.3.
3.3. MPD Influx Management Envelope (IME) 6.3.3.4. MPD Influx Management Decision Tree (IMDT) 6.3.
4. SMAASP & DMAASP 6.3.5. Mud Weight and SBP Selection using SMAASP & DMAASP 6.3.6. Kick Tolerance and Well Design / Casing Point Optimization 6.
3.7. Riser Gas Handling (RGH) to Prevent Riser Gas Unloading (RGU) Events 6.3.7.1. Introduction 6.3.
7.2. RGH / RGU Experimentation, Riser Gas Migration Monitoring 6.3.7.3. RGH / RGU Modeling 6.3.
7.4. Gas Hydrates 6.3.7.5. IADC Riser Gas Handling Guidelines 6.3.
7.6. Riser Gas Handling Equipment 6.3.7.7. Influx Management Envelope (IME) for Riser Gas Handling Events 6.3.
7.8. Handling Gas-in-Riser with Back-Pressure and Dilution Control 6.4. SBP Methods and Systems 6.4.1. Manual Approach with Trapped Back-Pressure 6.
4.2. Automated Approach with Trapped Back-Pressure 6.4.3. Automated Approach with Added Back-Pressure 6.5. SBP-MPD for Challenging Wells 6.
5.1. (Ultra-)Deepwater Wells 6.5.2. High Pressure High Temperature (HPHT) Wells 6.5.3.
Extended Reach Drilling (ERD) Wells 6.6. SBP Case Histories 6.7. Recommended Reading 7. Dual Gradient Drilling (DGD) 7.1. General Introduction 7.
2. Riserless Drilling (RD) - Weighted Mud Discharge at the Seafloor 7.2.1. RD Introduction 7.2.2. RD Systems, Equipment and Operation 7.
2.3. RD Case Histories Intermezzo - Road to RMR: Cuttings Transport System (CTS) 7.3. Riserless Mud Recovery (RMR) 7.3.1. RMR Introduction 7.
3.2. RMR Systems and Equipment 7.3.3. RMR Operation 7.3.3.
RMR Case Histories Intermezzo - Road to CML