Browse Subject Headings
Multiphase Reactor Engineering for Clean and Low-Carbon Energy Applications
Multiphase Reactor Engineering for Clean and Low-Carbon Energy Applications
Click to enlarge
Author(s): Cheng, Y.
ISBN No.: 9781119251101
Pages: 432
Year: 202504
Format: E-Book
Price: $ 340.60
Dispatch delay: Dispatched between 7 to 15 days
Status: Available (Forthcoming)

Preface xiii List of Contributors Xv 1 Novel Fluid Catalytic Cracking Processes 1 Jinsen Gao, Chunming Xu, Chunxi Lu Chaohe Yang, Gang Wang, Xingying Lan and Yongmin Zhang 1.1 FCC Process Description 1 1.2 Reaction Process Regulation for the Heavy Oil FCC 3 1.2.1 Technology Background 3 1.2.2 Principle of the Technology 3 1.2.


3 Key Fundamental Research 4 1.2.4 Industrial Validation 7 1.3 Advanced Riser Termination Devices for the FCC Processes 10 1.3.1 Introduction 10 1.3.2 General Idea of the Advanced RTD System 11 1.


3.3 Development of the ExternalRiser FCC RTD Systems 12 1.3.4 Development of the InternalRiser FCC RTDs 15 1.3.5 Conclusions and Perspectives 18 1.4 An MZCC FCC Process 19 1.4.


1 Technology Background 19 1.4.2 Reaction Principle for MZCC 19 1.4.3 Design Principle of MZCC Reactor 20 1.4.4 Key Basic Study 23 1.4.


5 The Industry Application of MZCC 23 1.4.6 Prospectives 26 1.5 TwoStage Riser Fluid Catalytic Cracking Process 28 1.5.1 Preface 28 1.5.2 Reaction Mechanism of Heavy Oil in the Riser Reactor 29 1.


5.3 The Proposed TSR FCC Process 32 1.5.4 The Industrial Application of the TSR FCC Technology 33 1.5.5 The Development of the TSR FCC Process 33 1.6 FCC Gasoline Upgrading by Reducing Olefins Content Using SRFCC Process 36 1.6.


1 Research Background 36 1.6.2 Reaction Principle of Gasoline Upgrading 37 1.6.3 Design and Optimization on the Subsidiary Riser 38 1.6.4 Key Fundamental Researches 38 1.6.


5 Industrial Applications of the SRFCC Process 42 1.6.6 Outlook 43 1.7 FCC Process Perspectives 44 References 45 2 Coal Combustion 49 Guangxi Yue, Junfu Lv and Hairui Yang 2.1 Fuel and Combustion Products 49 2.1.1 Composition and Properties of Fuel 49 2.1.


2 Analysis of Compositions in the Fuel 50 2.1.3 Calorific Value of Fuel 50 2.1.4 Classifications of Coal 50 2.1.5 Combustion Products and Enthalpy of Flue Gas 51 2.2 Device and Combustion Theory of Gaseous Fuels 52 2.


2.1 Ignition of the Gaseous Fuels 52 2.2.2 Diffusion Gas Burner 52 2.2.3 Fully PremixedType Gas Burner 53 2.3 Combustion Theory of Solid Fuel 53 2.3.


1 The Chemical Reaction Mechanism of Carbon Combustion 54 2.3.2 Carbon Combustion Reaction Process 54 2.4 Grate Firing of Coal 55 2.4.1 Coal Grate Firing Facilities 56 2.5 Coal Combustion in CFB Boiler 57 2.5.


1 The Characteristic of Fluidized Bed 57 2.5.2 Combustion Characteristic of CFB Boiler 58 2.5.3 Development of Circulating Fluidized Bed Combustion Technology 58 2.5.4 Comparison Between Bubbling Fluidized bed and Circulating Fluidized Bed 59 2.6 Pulverized Coal Combustion 60 2.


6.1 Furnace Type of Pulverized Coal Combustion 61 2.6.2 Circulation Mode of Water Wall 62 2.6.3 Modern LargeScale Pulverized Coal Combustion Technology 62 2.6.4 The International Development of the Supercritical Pressure Boiler 62 References 63 3 Coal Gasification 65 Qiang Li and Jiansheng Zhang 3.


1 Coal Water Slurry 65 3.1.1 The Advantage of CWS 65 3.1.2 The Production of CWS 66 3.1.3 The Atomization of CWS 67 3.2 The Theory of Coal Gasification 70 3.


2.1 Overview of Coal Gasification 70 3.2.2 The Main Reaction Processes of Coal Gasification 72 3.2.3 Kinetics of Coal Gasification Reaction 73 3.2.4 The Influencing Factors of Coal Gasification Reaction 77 3.


3 Fixed Bed Gasification of Coal 79 3.3.1 The Principle of Fixed Bed Gasification 79 3.3.2 The Classification of Fixed Bed Gasification Technology 81 3.3.3 Typical Fixed Bed Gasification Technologies 81 3.3.


4 The Key Equipment for Pressurized Fixed Bed Gasifier 85 3.3.5 The Application and Improvement of Pressurized Fixed Bed Gasifier in China 89 3.4 Fluid Bed Gasification of Coal 90 3.4.1 The Basic Principles of Fluidized Bed Gasification 90 3.4.2 Typical Technology and Structure of Fluidized Bed Gasification 91 3.


5 Entrained Flow Gasification of Coal 98 3.5.1 The Principle of Entrained Flow Gasification Technology 98 3.5.2 Typical Entrained Gas Gasification Technologies 101 3.6 Introduction to the Numerical Simulation of Coal Gasification 112 3.6.1 The Numerical Simulation Method of Coal Gasification 112 3.


6.2 Coal Gasification Numerical Simulation (CFD) Method 113 References 116 4 New Development in Coal Pyrolysis Reactor 119 Guangwen Xu, Xi Zeng, Jiangze Han and Chuigang Fan 4.1 Introduction 119 4.2 Moving Bed with Internals 121 4.2.1 Laboratory Tests at Kilogram Scale 122 4.2.2 Verification Tests at 100kg Scale 125 4.


2.3 Continuous Pilot Verification 127 4.3 Solid Carrier FB Pyrolysis 129 4.3.1 Fundamental Study 130 4.3.2 Pilot Verification with Air Gasification 136 4.4 Multistage Fluidized Bed Pyrolysis 139 4.


4.1 Experimental Apparatus and Method 139 4.4.2 Results and Discussion 141 4.5 Solid Carrier Downer Pyrolysis 145 4.5.1 Experimental Apparatus and Method 146 4.5.


2 Results and Discussion 147 4.6 Other Pyrolysis Reactors 149 4.6.1 Solid Heat Carrier Fixed Bed 149 4.6.2 A Few Other New Pyrolysis Reactors 150 4.7 Concluding Remarks 153 Acknowledgments 153 References 153 5 Coal Pyrolysis to Acetylene in Plasma Reactor 155 Binhang Yan and Yi Cheng 5.1 Introduction 155 5.


1.1 Background 155 5.1.2 Principles and Features of Thermal Plasma 156 5.1.3 Basic Principles of Coal Pyrolysis in Thermal Plasma 157 5.1.4 Development of Coal Pyrolysis to Acetylene Process 158 5.


2 Experimental Study of Coal Pyrolysis to Acetylene 159 5.2.1 Experimental Setup 159 5.2.2 Typical Experimental Results 161 5.3 Thermodynamic Analysis of Coal Pyrolysis to Acetylene 164 5.3.1 Equilibrium Composition with/without Consideration of Solid Carbon 164 5.


3.2 Validation of Thermodynamic Equilibrium Predictions 164 5.3.3 Effect of Additional Chemicals on Thermodynamic Equilibrium 165 5.3.4 Key Factors to Determine the Reactor Performance 166 5.3.5 Key Factors to Determine the Reactor Performance 168 5.


4 Computational Fluid DynamicsAssisted Process Analysis and Reactor Design 171 5.4.1 Kinetic Models of Coal Devolatilization 171 5.4.2 Generalized Model of Heat Transfer and Volatiles Evolution Inside Particles 176 5.4.3 CrossScale Modeling and Simulation of Coal Pyrolysis to Acetylene 180 5.5 Conclusion and Outlook 183 References 186 6 Multiphase Flow Reactors for Methanol and Dimethyl Ether Production 189 Tiefeng Wang and Jinfu Wang 6.


1 Introduction 189 6.1.1 Methanol 189 6.1.2 Dimethyl Ether 189 6.2 Process Description 191 6.2.1 Methanol Synthesis 191 6.


2.2 DME Synthesis 192 6.2.3 Reaction Kinetics 195 6.3 Reactor Selection 197 6.3.1 Fixed Bed Reactor 197 6.3.


2 Slurry Reactor 198 6.4 Industrial Design and ScaleUp of Fixed Bed Reactor 200 6.4.1 Types of Fixed Bed Reactors 200 6.4.2 Design of LargeScale Fixed Bed Reactor 201 6.5 Industrial Design and ScaleUp of Slurry Bed Reactor 202 6.5.


1 Flow Regime of the Slurry Reactor 202 6.5.2 Hydrodynamics of Slurry Bed Reactor 203 6.5.3 Process Intensification with Internals 203 6.5.4 ScaleUp of Slurry Reactor 206 6.6 Demonstration of Slurry Reactors 213 6.


7 Conclusions and Remarks 214 References 215 7 Fischer-Tropsch Processes and Reactors 219 Li Weng and Zhuowu Men 7.1 Introduction to Fischer-Tropsch Processes and Reactors 219 7.1.1 Introduction to Fischer-Tropsch Processes 219 7.1.2 Commercial FT Processes 219 7.1.3 FT Reactors 220 7.


1.4 Historical Development of FT SBCR 221 7.1.5 Challenges for FT SBCR 222 7.2 SBCR Transport Phenomena 222 7.2.1 Hydrodynamics Characteristics 222 7.2.


2 Mass Transfer 226 7.2.3 Heat Transfer 229 7.3 SBCR Experiment Setup and Results 231 7.3.1 Introduction to SBCR Experiments 231 7.3.2 Cold Mode and Instrumentation 234 7.


3.3 Hot Model and Operation 247 7.4 Modeling of SBCR for FT Synthesis Process 249 7.4.1 Introduction 249 7.4.2 Model Discussion 250 7.4.


3 Multiscale Analysis 256 7.4.4 Conclusion 258 7.5 Reactor ScaleUp and Engineering Design 259 7.5.1 General Structures of SBCR 259 7.5.2 Internal Equipment 259 7.


5.3 Design and ScaleUp Strategies of SBCR 261 Nomenclature 262 References 263 8 Methanol to Lower Olefins and Methanol to Propylene 271 Yao Wang and Fei Wei 8.1 Background 271 8.2 Catalysts 272 8.3 Catalytic Reaction Mechanism 273 8.3.1 HP Mechanism 274 8.3.


2 DualCycle Mechanism 274 8.3.3 Complex Reactions 275 8.4 Features of the Catalytic Process 275 8.4.1 Autocatalytic Reactions 275 8.4.2 Deactivation and Regeneration 276 8.


4.3 Exothermic Reactions 278 8.5 Multiphase Reactors 278 8.5.1 Fixed Bed Reactor 279 8.5.2 Moving Bed Reactor 280 8.5.


3 Fluidized Bed Reactor 281 8.5.4 Parallel or Series Connection Reactors 284

To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...
Browse Subject Headings