Browse Subject Headings
Sustainable Supercapacitors : Next-Generation of Green Energy Storage Devices
Sustainable Supercapacitors : Next-Generation of Green Energy Storage Devices
Click to enlarge
Author(s): Ahamed
ISBN No.: 9781394237876
Pages: 384
Year: 202411
Format: Trade Cloth (Hard Cover)
Price: $ 283.85
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

Preface xiii 1 Flexible Sustainable Supercapacitors 1 S. Siva Shalini, R. Balamurugan, I. Ajin and A. Chandra Bose 1.1 Introduction 2 1.2 Flexible Electrodes 3 1.3 Electrode Materials 3 1.


4 Modifying Techniques to Enhance Electrochemical Performance 4 1.5 Flexible Supercapacitors 5 1.6 Sustainable Supercapacitors 13 1.7 Conclusions 25 References 25 2 Role of Electrolytes in Sustainable Supercapacitors 33 Soumya Jha and R. Prasanth 2.1 Introduction 34 2.2 Parameters Characterizing Sustainable Supercapacitors and Their Interactions with Electrolytes 37 2.2.


1 Capacitance 37 2.2.2 Power Density and Energy Density 39 2.2.3 Equivalent Series Resistance 39 2.2.4 Cycle Life 40 2.2.


5 Self-Discharge Rate 40 2.2.6 Thermal Stability 40 2.3 Different Types of Electrolytes Used in Sustainable Supercapacitors 40 2.3.1 Aqueous Electrolytes 42 2.3.2 Organic Electrolytes 51 2.


3.3 Ionic Liquid Electrolytes 52 2.3.4 Solid and Quasi-Solid-State Electrolytes 54 2.3.5 Redox Active Electrolytes 56 2.4 Difficulties Associated with Electrolytes in a Sustainable Supercapacitor 57 2.5 Potential Research Avenues for Resolving the Problems with Electrolytes 58 2.


5.1 Improving the Potential Window of Electrolyte Values to Boost the Energy Density of the SCs 59 2.5.2 Increasing the Purity of Electrolytes 60 2.5.3 Enhancing the Compatibility of the Electrode Materials and Electrolyte to Improve Overall Performance 60 2.5.4 Effect of Ionic Radii at the Electrode-Electrolyte Interface to Enhance Overall Supercapacitive Performance 60 2.


5.5 Extend Basic Comprehension via Theoretical and Experimental Research 61 2.5.6 Expanding the Temperature Range Where the SC Functions 62 2.5.7 Standardization of Technique for Evaluating Electrolyte Performance 62 2.6 Conclusion 63 References 63 3 Green Supercapacitors 73 Priya R. and S.


Sonia 3.1 Introduction 73 3.2 History of Supercapacitors 74 3.3 Supercapacitors 75 3.3.1 Mechanism 75 3.3.2 Supercapacitor Specifications 76 3.


3.3 Characteristics of a Supercapacitor 76 3.3.3.1 Charging Time 76 3.3.3.2 Specific Performance of SCs 76 3.


3.3.3 Supercapacitor Life Cycle 77 3.3.3.4 Safety of Supercapacitors 77 3.4 Advantages of Supercapacitors 77 3.5 Disadvantages of Supercapacitors 77 3.


6 Applications of Supercapacitors 78 3.7 Classification of Supercapacitors 79 3.7.1 Electrostatic Double-Layer Capacitors 79 3.7.1.1 Electrodes 80 3.7.


1.2 Electrolyte 80 3.7.1.3 Separator 80 3.7.1.4 Carbon Nanotubes 81 3.


7.2 Pseudo-Capacitors 81 3.7.2.1 Working Principle of a Pseudo-Capacitor 82 3.7.2.2 Classifications of Pseudo-Capacitors 82 3.


7.2.3 Advantages of Pseudo-Capacitors 83 3.7.2.4 Disadvantages of Pseudo-Capacitors 84 3.7.2.


5 Applications of Pseudo-Capacitors 84 3.7.3 Hybrid Capacitors 84 3.8 Importance of Supercapacitors in Our Everyday Life 85 3.9 The Future of Supercapacitors 85 3.10 Comparison of Supercapacitor versus Battery 85 3.11 Role of Metal-Organic Framework in Supercapacitors 86 3.12 Eco-Friendly Supercapacitors 88 3.


13 Conclusions 93 References 93 4 Materials for Sustainable Supercapacitors 97 Arunima Verma, Vandana and Tanuj Kumar 4.1 Introduction to Supercapacitors and Sustainability 97 4.1.1 Overview of Supercapacitor Technology 98 4.1.1.1 Characteristics of Supercapacitor Technology 99 4.1.


1.2 Application of Supercapacitor 101 4.1.2 Importance of Sustainability in Energy Storage 102 4.2 Fundamentals of Supercapacitors 105 4.2.1 Basic Principles of Supercapacitor Operation 105 4.2.


2 Types of Supercapacitors: Electrochemical Double-Layer Capacitors (EDLCs) 107 4.3 Sustainable and Eco-Friendly Materials for Supercapacitors 109 4.3.1 Substances Derived from Carbon 109 4.3.2 Components Found in Biomass 109 4.3.3 Porous Organic Polymers (POPs) 110 4.


3.4 Metal-Organic Frameworks 111 4.3.5 Electrolytes 112 4.4 Advancements in Electrode Materials 113 4.4.1 Carbon-Based Materials: Activated Carbon, Carbon Nanotubes, and Graphene 113 4.4.


2 Conductive Polymers 114 4.5 Challenges and Future Perspectives 115 4.5.1 Current Limitations in Sustainable Supercapacitor Technology 115 4.5.2 Future Research Directions and Potential Breakthroughs 116 4.6 Conclusions 117 References 118 5 Role of Material Selection and Fabrication Approach in the Performance of Sustainable Supercapacitors 123 S. Sreehari, A.


V. Mahadev, D. A. Nayana, Dinesh Raj R., P. K. Manoj and Arun Aravind 5.1 Introduction 124 5.


2 Electrode Materials for Supercapacitors 125 5.2.1 Carbon-Based Materials 126 5.2.1.1 Activated Carbons (ACs) 126 5.2.1.


2 Carbide-Derived Carbons (CDCs) 127 5.2.1.3 Other Carbon Materials 131 5.2.2 Metal Oxide-Based Materials 131 5.2.3 Conducting Polymers (CPs) 132 5.


2.4 Nanocomposites of Carbon Materials, CPs, and MOs 133 5.2.5 Modern-Day Materials 134 5.2.5.1 MXenes 134 5.2.


5.2 Metal Nitrides 135 5.2.5.3 Metal-Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs) 136 5.2.5.4 Black Phosphorus (BP) 138 5.


2.6 The Electrolytes 139 5.3 Fabrication Techniques for Supercapacitors 139 5.3.1 Electrode Fabrication 139 5.3.1.1 Laser Processing 139 5.


3.1.2 3D Printing 140 5.3.1.3 Sol-Gel Method 141 5.3.1.


4 Chemical Vapor Deposition (CVD) 142 5.3.1.5 Electrochemical Deposition 142 5.3.2 Electrolyte Fabrication 143 5.3.2.


1 Gel Polymer Electrolyte (GPE) 143 5.3.2.2 Aqueous Electrolytes 144 5.3.2.3 Redox Additive Electrolyte (RAE) 144 5.3.


3 Separator Fabrication 145 5.3.3.1 Polymer-Based Membranes 145 5.3.3.2 Ceramic-Based Separators 146 5.3.


3.3 Bio-Based Separator Membranes 146 5.4 Conclusion 147 References 148 6 Electronics and Communication Applications 159 Umesh V. Shembade, Mayuri G. Magadum, Sandeep B. Wategaonkar, Gopinath S. Khansole and Annasaheb V. Moholkar 6.


1 Introduction 160 6.2 Fundamentals of SCs 162 6.3 Environmental Impact 164 6.3.1 Structure and Specifications 164 6.3.2 Classifications 165 6.3.


3 Electrode Materials and Their Role in SCs 165 6.4 Technological Aspects for SCs 170 6.5 Role of SCs in the Electronics Sector 172 6.5.1 Starter 173 6.5.2 Hybrid Vehicle 174 6.5.


3 Uninterruptable Power Supplies (UPS) 175 6.5.4 Mobile Handsets 175 6.6 Future Prospects of SCs in the Electronics Sector 177 6.7 Role of SCs in the Communications Sector 177 6.8 Future Prospects of SCs in the Communications Sector 178 6.9 Summary and Conclusion 179 References 180 7 Energy Storage Breakthroughs: Supercapacitors in Healthcare Applications 185 Jyoti Prakash Das, Sang Jae Kim and Ananthakumar Ramadoss 7.1 Introduction 186 7.


2 Supercapacitors 189 7.3 Material Selection for Bio-Compatible Supercapacitor 190 7.3.1 Biocompatibility 191 7.3.2 Stable Performance 192 7.3.3 Mechanical Endurance 193 7.


3.4 Design Flexibility 195 7.3.5 Modification Strategies 196 7.4 External Power Supply for Health Monitoring 197 7.4.1 Health Monitoring 197 7.4.


2 Remote Location Treatment 200 7.4.3 Therapy 200 7.4.4 Implantable Devices 201 7.5 Bio-Based Supercapacitor Integration 204 7.5.1 Electrodes 206 7.


5.2 Separator 207 7.5.3 Electrolyte 207 7.5.4 Current Collector/Packaging 209 7.6 Charging Strategy 210 7.6.


1 Photovoltaic 211 7.6.2 Ultrasonic 211 7.6.3 RF Energy/Inductive Coupling Charging 213 7.6.4 Chemical Energy 215 7.6.


5 Mechanical Energy 216 7.7 Challenges and Future Prospects 217 7.8 Conclusion 218 Acknowledgements 218 References 219 8 Recent Trends in the Development of Sustainable Supercapacitors 227 Sandeep B. Wategaonkar, Umesh V. Shembade, Mayuri G. Magadum, Jaywant V. Mane, Prathamesh B. Patil, Tushar T.


Bhosale, Nishigandha B. Chougale and Annasaheb V. Moholkar 8.1 Introduction 228 8.2 Recent Trends in Electrode Materials 229 8.2.1 Carbon-Based Electrodes 231 8.2.


2 Metal Oxide-Based Electrode Materials 237 8.3 Role of Different Electrolytes in the Field of Sustainable SCs 240 8.3.1 Types of Electrolytes 241 8.4 Recent Trends in the Synthesis Mechanism for Sustainable SCs 247 8.4.1 Chemical Synthesis 247 8.5 Green Synthesis of the Sustainable SCs 254 8.


6 Conclusion and Future Prospects of Sustainable SCs 256 References 258 9 Cyclic Stability and Capacitance Retention of MXene-Based Supercapacitors 265 Muhammad Akmal Kosnan, Mohd Asyadi Azam and Akito Takasaki 9.1 Introduction 266 9.2 Cyclic Stability and Capacitance/Capacity Retention of Supercapacitors and Batteries 270 9.2.1 Cyclic Stability and Capacitance Retention of MXene-Based Supercapacitors 273 9.2.1.1 Individual MXene-Based Supercapacitors 273 9.


2.1.2 MXene-Graphene-Based Supercapacitors 276 9.2.1.3 MXene-CNT-Based Supercapacitors 277 9.2.1.


4 MXene-Carbon Allotrope-Based Supercapacitors 2.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...
Browse Subject Headings