Preface xvii Part I: Advanced Photoenergy Materials 1 1 Use of Carbon Nanostructures in Hybrid Photovoltaic Devices 3 Teresa Gatti and Enzo Menna 1.1 Introduction 4 1.2 Carbon Nanostructures 7 1.2.1 Structure and Physical Properties 7 1.2.2 Chemical Functionalization Approaches 9 1.3 Use of Carbon Nanostructures in Hybrid Photovoltaic Devices 12 1.
3.1 Use of Carbon Nanostructures in Dye Sensitized Solar Cells 13 1.3.2 Use of Carbon Nanostructures in Perovskite Solar Cells 21 1.4 Conclusions and Outlook 38 Acknowledgements 40 References 41 2 Dye-Sensitized Solar Cells: Past, Present and Future 49 Joaquín Calbo 2.1 Introduction 49 2.2 Operational Mechanism 52 2.3 Sensitizer 56 2.
3.1 Ruthenium-Based Dyes 56 2.3.2 Organic Dyes 57 2.3.3 Natural Dyes 60 2.3.4 Porphyrin Dyes 62 2.
3.5 Quantum Dot Sensitizers 64 2.3.6 Perovskite-Based Sensitizers 66 2.4 Photoanode 68 2.4.1 Nanoarchitectures 69 2.4.
2 Light Scattering Materials 70 2.4.3 Composites 72 2.4.4 Doping 74 2.4.5 Interfacial Engineering 75 2.4.
6 TiCl4 Treatment 76 2.5 Electrolyte 77 2.5.1 Liquid Electrolytes 78 2.5.2 Quasi-Solid-State Electrolytes 81 2.5.3 Solid-State Transport Materials 83 2.
6 Counter Electrode 86 2.6.1 Metals and Alloys 86 2.6.2 Carbon-Based Materials 88 2.6.3 Conducting Polymers 90 2.6.
4 Transition Metal Compounds 91 2.6.5 Hybrid Materials 93 2.7 Summary and Perspectives 95 Acknowledgements 96 References 96 3 Perovskite Solar Modules: Correlation between Efficiency and Scalability 121 Fabio Matteocci, Luigi Angelo Castriotta and Alessandro Lorenzo Palma 3.1 Introduction 122 3.2 Printing Techniques 125 3.2.1 Solution Processing Techniques 126 3.
2.2 Vacuum-Based Techniques 127 3.3 Scaling Up Process 130 3.3.1 Spin Coated PSM 130 3.3.2 Blade Coated PSM 132 3.3.
3 Slot Die Coating 133 3.3.4 Screen-Printed PSM 134 3.3.5 Vacuum-Based PSM 136 3.3.6 Solvent and Vacuum Free Perovskite Deposition 137 3.4 Modules Architecture 137 3.
4.1 Series-Connected Solar Modules 138 3.4.2 Parallel-Connected Solar Modules 139 3.5 Process Flow for the Production of Perovskite Based Solar Modules 141 3.5.1 The P1-P2-P3 Process 142 References 145 4 Brief Review on Copper Indium Gallium Diselenide (CIGS) Solar Cells 157 Raja Mohan and Rini Paulose 4.1 Introduction 157 4.
1.1 Photovoltaic Effect 158 4.1.2 Solar Cell Material 158 4.2 Factors Affecting PV Performance 159 4.2.1 Doping 159 4.2.
2 Diffusion and Drift Current 159 4.2.3 Recombination 160 4.2.4 Diffusion Length 160 4.2.5 Grain Size and Grain Boundaries 161 4.2.
6 Cell Thickness 161 4.2.7 Cell Surface 161 4.3 CIGS Based Solar Cell and Its Configuration 161 4.3.1 CIGS Configuration 163 4.4 Advances in CIGS Solar Cell 179 4.4.
1 CIGS-Tandem Solar Cell 179 4.4.2 Flexible CIGS Solar Cell 181 4.5 Summary 182 Acknowledgement 183 References 183 5 Interface Engineering for High-Performance Printable Solar Cells 193 Jinho Lee, Hongkyu Kang, Soonil Hong, Soo-Young Jang, Jong-Hoon Lee, Sooncheol Kwon, Heejoo Kim and Kwanghee Lee 5.1 Introduction 194 5.2 Electrolytes 195 5.2.1 Introduction of Electrolytes for Interface Engineering 195 5.
2.2 Applications of Electrolytes to Printable Solar Cells 197 5.3 Transition Metal Oxides (TMOs) 210 5.3.1 Introduction of TMOs as ESLs for Interface Engineering 210 5.3.2 Applications of TMOs for Printable Solar Cells 212 5.3.
3 Applications of TMOs as HSLs for Printable Solar Cells 219 5.4 Organic Semiconductors 225 5.4.1 Introduction of Organic Semiconductors for Interface Engineering 225 5.4.2 Applications for Printable Solar Cells 226 5.5 Outlook 237 Acknowledgement 238 References 238 6 Screen Printed Thick Films on Glass Substrate for Optoelectronic Applications 253 Rayees Ahmad Zargar and Manju Arora 6.1 What Is Thick Film, Its Technology with Advantages 253 6.
1.1 Thick Film Materials Substrates 254 6.1.2 Thick Film Inks 254 6.1.3 Sheet Resistivity 255 6.1.4 Conductor Pastes 255 6.
1.5 Dielectric Pastes 256 6.1.6 Resistor Pastes 256 6.2 To Select Suitable Technology for Film Deposition by Considering the Economy, Flexibility, Reliability and Performance Aspects 256 6.3 Experimental Procedure for Preparation of Thick Films by Screen Printing Process 257 6.4 Introduction of Semiconductor Metal Oxide (SMO) and Their Usage in Optoelectronic and Chemical Sensor Applications 262 6.4.
1 Preparation of Cd0.75Zn0.25O Composition for Coating on Glass Substrate 263 6.5 To Study the Structural, Optical and Electrical Characteristics of Thick Film 264 6.5.1 X-Ray Diffraction (XRD) Analysis 264 6.5.2 Scanning Electron Microscopy (SEM) Analysis 265 6.
5.3 Optical Properties 265 6.5.4 Electrical Conduction Mechanism 270 6.6 To Study the Sensitivity, Selectivity, Stability and Response and Recovery Time for Various Gases: CO2, LPG, Ethanol, NH3, NO2 and H2S at Different Operating Temperatures 272 6.6.1 Mechanical Sensor 272 6.6.
2 Sensing Performance of the Sensor 277 6.7 Conclusion(s) 279 Acknowledgments 279 References 280 7 Hausmannite (Mn3O4) - Synthesis and Its Electrochemical, Catalytic and Sensor Application 283 Rini Paulose and Raja Mohan 7.1 Hausmannite as Energy Storage Material: Introduction 284 7.1.1 Synthesis Methods 286 7.1.2 Electrochemical Behaviour 289 7.2 Hausmannite - Catalytic Application 304 7.
2.1 Photocatalytic Application 305 7.2.2 Electrocatalytic Application 306 7.3 Hausmannite - Sensor Application 308 7.4 Summary 309 Acknowledgement 310 References 310 Part II: Advanced Thin Films Materials 321 8 Sol-Gel Technology to Prepare Advanced Coatings 323 Flavia Bollino and Michelina Catauro 8.1 Introduction 324 8.1.
1 Sol-Gel Chemistry 327 8.2 Sol-Gel Coating Preparation 335 8.2.1 Dip Coating 337 8.2.2 Spin Coating 341 8.3 Organic-Inorganic Hybrid Sol-Gel Coatings 346 8.4 Sol-Gel Coating Application 350 8.
4.1 Optical Coatings 351 8.4.2 Electronic Films 352 8.4.3 Protective Films 354 8.4.4 Porous Films 357 8.
4.5 Biomedical Application of the Sol-Gel Coatings 358 8.5 Conclusion 366 References 367 9 The Use of Power Spectrum Density for Surface Characterization of Thin Films 379 Fredrick Madaraka MwemaOluseyi Philip Oladijo and Esther Titilayo Akinlabi 9.1 Introduction 380 9.1.1 Uses of Power Spectral Density 382 9.1.2 Theory of Power Spectral Density 383 9.
2 Literature Review 387 9.3 Methodology 389 9.3.1 Thin Film Deposition 390 9.3.2 Atomic Force Microscopy 390 9.3.3 Image Analysis 391 9.
4 Results and Discussion 395 9.4.1 AFM Images and Line Profile Analysis 395 9.4.2 Power Spectral Density Profiles 398 9.5 Conclusion 407 References 409 10 Advanced Coating Nanomaterials for Drug Release Applications 413 Natalia A. Scilletta, Sofía Municoy, Martín G. Bellino, Galo J.
A. A. Soler-Illia, Martín F. Desimone and Paolo N. Catalano 10.1 Introduction 414 10.2 Ceramic Coating Nanomaterials 415 10.2.
1 Hydroxyapatite-Based Nanocoatings 415 10.2.2 Oxide-Based Nanocoatings 420 10.3 Biopolymer Coating Nanomaterials 433 10.4 Composite Coating Nanomaterials 439 10.5 Conclusion and Perspectives 445 References 461 11 Advancement in Material Coating for Engineering Applications 473 Idowu David Ibrahim, Emmanuel Rotimi Sadiku, Yskandar Hamam, Yasser Alayli, Tamba Jamiru, Williams Kehinde Kupolati, Azunna Agwo Eze, Stephen C. Agwuncha, Chukwunonso Aghaegbulam Uwa, Moses Oluwafemi Oyesola, Oluyemi Ojo Daramola and Mokgaotsa Jonas Mochane 11.1 Introduction 474 11.
2 Material Coating Methods 475 11.3 Electrostatic Powder Coating 475 11.3.1 Galvanizing 477 11.3.2 Powder Coating 480 11.4 Influence of Coating on the Base Material 480 11.4.
1 Corrosion Resistance 480 11.4.2 Wear Resistance 485 11.5 Factors Affecting Properties of Coated Materials 487 11.6 Areas of Application of Coated Materials 490 11.6.1 Oil and Water Separation 490 11.6.
2 Membrane Technology 491 11.6.3 Construction and Aircraft 492 11.7 Conclusion 493 Acknowledgment 494 References 494 12 Polymer and Carbon-Based Coatings for Biomedical Applications 499 Shesan J. Owonubi, Linda Z. Linganiso, Tshwafo E. Motaung and Sandile P. Songca 12.
1 Introduction 500 12.2 Coating 500 12.3 Surface Interactions with Biological Systems 501 12.3.1 Cell Adhesion 501 12.3.2 Interactions between Blood and Coating Material 502 12.3.
3 Biofilm Formation as a Result of Bacterial Attachment 502 12.4 Biomedical Applications of Coatings 502 12.5 Polymer Based Coating for Biomedical Applications 504 12.5.1 Drug Delivery 504 12.5.2 Prevention of Infections from Micro-Organisms 506 12.5.
3 Biose.