Browse Subject Headings
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care : First Deep Breast Workshop, Deep Breath 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care : First Deep Breast Workshop, Deep Breath 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings
Click to enlarge
ISBN No.: 9783031777882
Pages: xi, 246
Year: 202502
Format: Trade Paper
Price: $ 81.24
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

Evaluation of Bagging Ensembles on Multimodal Data for Breast Cancer Diagnosis.- HF-Fed: Hierarchical based customized Federated Learning Framework for X-Ray Imaging.- DuEU-Net: Dual Encoder UNet with Modality-Agnostic Training for PET-CT Multi-Modal Organ and Lesion Segmentation.- One for All: UNET Training on Single-Sequence Masks for Multi-Sequence Breast MRI Segmentation.- Multimodal Breast MRI Language-Image Pretraining (MLIP): An Exploration of a Breast MRI Foundation Model.- Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data.- Efficient Generation of Synthetic Breast CT Slices By Combining Generative and Super-Resolution Models.- Exploring Patient Data Requirements in Training Effective AI Models for MRI-based Breast Cancer Classification.


- Virtual dynamic contrast enhanced breast MRI using 2D U-Net.- Optimizing BI-RADS 4 Lesion Assessment using Lightweight Convolutional Neural Network with CBAM in Contrast Enhanced Mammography.- Mammographic Breast Positioning Assessment via Deep Learning.- Endpoint Detection in Breast Images for Automatic Classification of Breast Cancer Aesthetic Results.- Thick Slices for Optimal Digital Breast Tomosynthesis Classification with Deep-Learning.- Predicting Aesthetic Outcomes in Breast Cancer Surgery: a Multimodal Retrieval Approach.- Vision Mamba for Classification of Breast Ultrasound Images.- Breast Cancer Molecular Subtyping from H&E Whole Slide Images using Foundation Models and Transformers.


- Graph Neural Networks for modelling breast biomechanical compression.- A generative adversarial approach to remove Moiré artifacts in Dark-field and Phase-contrast x-ray images.- MRI Breast tissue segmentation using nnUNet for Biomechanical modeling.- Fat-Suppressed Breast MRI Synthesis for Domain Adaptation in Tumour Segmentation.- Guiding Breast Conservative Surgery by Augmented Reality from Preoperative MRI: Initial System Design and Retrospective Trials.- ELK: Enhanced Learning through cross-modal Knowledge transfer for lesion detection in limited-sample contrast-enhanced mammography datasets.- Safe Breast Cancer Diagnosis Resilient to Mammographic Adversarial Samples.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...
Browse Subject Headings