Browse Subject Headings
Computer Vision - ECCV 2024 Workshops : Milan, Italy, September 29-October 4, 2024, Proceedings, Part III
Computer Vision - ECCV 2024 Workshops : Milan, Italy, September 29-October 4, 2024, Proceedings, Part III
Click to enlarge
ISBN No.: 9783031918346
Pages: lv, 352
Year: 202505
Format: Trade Paper
Price: $ 240.68
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

Wild Berry image dataset collected in Finnish forests and peatlands using drones.- Soybean pod and seed counting in both outdoor fields and indoor laboratories using unions of deep neural networks.- A Framework for Enhanced Decision Support in Digital Agriculture Using Explainable Machine Learning.- Lincoln's Annotated Spatio-Temporal Strawberry Dataset (LAST-Straw).- 3D Phenotyping of Canopy Occupation Volume as a Major Predictor for Canopy Photosynthesis in Rice (Oryza sativa L.).- Retrieval of sun-induced plant fluorescence in the O2-A absorption band from DESIS imagery.- Unsupervised Tomato Split Anomaly Detection using Hyperspectral Imaging and Variational Autoencoders.


- KAN You See It? KANs and Sentinel for Effective and Explainable Crop Field Segmentation.- RoWeeder: Unsupervised Weed Mapping through Crop-Row Detection.- Consolidation of symbolic instances using sensor data via tracklet merging for long-term monitoring of crops.- Automated Generation of Accurate, Compact and Focused Crop and Weed Segmentation Models.- Comparative Analysis of YOLOv9, YOLOv10 and RT-DETR for Real-Time Weed Detection.- Towards Auto-Generated Ground Truth for Evaluation of Perception Systems in Agriculture.- AgriBench: A Hierarchical Agriculture Benchmark for Multimodal Large Language Models.- Deep Learning Based Growth Modeling of Plant Phenotypes.


- A simple approach to pavement cell segmentation.- Enhancing weed detection performance by means of GenAI-based image augmentation.- SynthSet: Generative Diffusion Model for Semantic Segmentation in Precision Agriculture.- Robust UDA for Crop and Weed Segmentation: Multi-Scale Attention and Style-Adaptive Techniques.- Ordinal-Meta Learning for Fine-grained Fruit Quality Prediction.- Beyond Annotations: Efficient Wheat Head Segmentation Using L-Systems, Game Engines, and Student-Teacher Models.- Exploiting Boundary Loss for the Hierarchical Panoptic Segmentation of Plants and Leaves.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...
Browse Subject Headings