Foreword by Anne M. Brown xxiii Foreword by Jared Lander xxv Preface xxvii Changes in the Second Edition xxxix Part I: Introduction 1 Chapter 1. Pandas DataFrame Basics 3 Learning Objectives 3 1.1 Introduction 3 1.2 Load Your First Data Set 4 1.3 Look at Columns, Rows, and Cells 6 1.4 Grouped and Aggregated Calculations 23 1.5 Basic Plot 27 Conclusion 28 Chapter 2.
Pandas Data Structures Basics 31 Learning Objectives 31 2.1 Create Your Own Data 31 2.2 The Series 33 2.3 The DataFrame 42 2.4 Making Changes to Series and DataFrames 45 2.5 Exporting and Importing Data 52 Conclusion 63 Chapter 3. Plotting Basics 65 Learning Objectives 65 3.1 Why Visualize Data? 65 3.
2 Matplotlib Basics 66 3.3 Statistical Graphics Using matplotlib 72 3.4 Seaborn 78 3.5 Pandas Plotting Method 111 Conclusion 115 Chapter 4. Tidy Data 117 Learning Objectives 117 Note About This Chapter 117 4.1 Columns Contain Values, Not Variables 118 4.2 Columns Contain Multiple Variables 122 4.3 Variables in Both Rows and Columns 126 Conclusion 129 Chapter 5.
Apply Functions 131 Learning Objectives 131 Note About This Chapter 131 5.1 Primer on Functions 131 5.2 Apply (Basics) 133 5.3 Vectorized Functions 138 5.4 Lambda Functions (Anonymous Functions) 141 Conclusion 142 Part II: Data Processing 143 Chapter 6. Data Assembly 145 Learning Objectives 145 6.1 Combine Data Sets 145 6.2 Concatenation 146 6.
3 Observational Units Across Multiple Tables 154 6.4 Merge Multiple Data Sets 160 Conclusion 167 Chapter 7. Data Normalization 169 Learning Objectives 169 7.1 Multiple Observational Units in a Table (Normalization) 169 Conclusion 173 Chapter 8. Groupby Operations: Split-Apply-Combine 175 Learning Objectives 175 8.1 Aggregate 176 8.2 Transform 184 8.3 Filter 188 8.
4 The pandas.core.groupby.DataFrameGroupBy object 190 8.5 Working with a MultiIndex 195 Conclusion 199 Part III: Data Types 203 Chapter 9. Missing Data 203 Learning Objectives 203 9.1 What Is a NaN Value? 203 9.2 Where Do Missing Values Come From? 205 9.
3 Working with Missing Data 210 9.4 Pandas Built-In NA Missing 216 Conclusion 218 Chapter 10. Data Types 219 Learning Objectives 219 10.1 Data Types 219 10.2 Converting Types 220 10.3 Categorical Data 225 Conclusion 227 Chapter 11. Strings and Text Data 229 Introduction 229 Learning Objectives 229 11.1 Strings 229 11.
2 String Methods 233 11.3 More String Methods 234 11.4 String Formatting (F-Strings) 236 11.5 Regular Expressions (RegEx) 239 11.6 The regex Library 247 Conclusion 247 Chapter 12. Dates and Times 249 Learning Objectives 249 12.1 Python''s datetime Object 249 12.2 Converting to datetime 250 12.
3 Loading Data That Include Dates 253 12.4 Extracting Date Components 254 12.5 Date Calculations and Timedeltas 257 12.6 Datetime Methods 259 12.7 Getting Stock Data 261 12.8 Subsetting Data Based on Dates 263 12.9 Date Ranges 266 12.10 Shifting Values 270 12.
11 Resampling 276 12.12 Time Zones 278 12.13 Arrow for Better Dates and Times &.